Wutthisak Prachamon | Atomic Molecular | Best Researcher Award

Dr. Wutthisak Prachamon | Atomic Molecular | Best Researcher Award

Ubon Ratchathani University | Thailand

AUTHOR PROFILE

Scopus

Early Academic Pursuits:

Prof. Wutthisak Prachamon initiated his academic journey at Ubon Ratchathani University, where he pursued research and teaching activities in the field of Physics.

Professional Endeavors:

Throughout his career, Prof. Prachamon has contributed significantly to the field of Atomic Molecular Physics, particularly in the study of carbon nanotubes and transition oxides. His research focuses on density-functional studies, optical transitions, and optoelectronic properties of various materials.

Contributions and Research Focus:

Prof. Prachamon has made notable contributions through his research works, which include investigations into the topology of defects in carbon nanotubes, optical properties of materials, and the thermoelectric behavior of transition oxides. His studies have advanced the understanding of these materials and their potential applications in various fields.

Impact and Influence:

His research outputs have been published in reputable journals and have garnered attention within the scientific community. Prof. Prachamon's findings contribute to the broader body of knowledge in Atomic Molecular Physics and have implications for the development of novel materials and technologies.

Academic Citations:

Prof. Prachamon's research works have been cited numerous times in the academic literature, indicating their impact and relevance within the scientific community.

Legacy and Future Contributions:

Prof. Prachamon's legacy lies in his significant contributions to the understanding of atomic and molecular behavior in materials. His future contributions are anticipated to further advance the field, potentially leading to innovations in materials science and technology.

Notable Publication:

Density-functional study of hydrazine doped single-walled carbon nanotubes as an n-type semiconductor 

Zainab Ashkanani | Atomic Molecular | Best Researcher Award

Dr. Zainab Ashkanani | Atomic Molecular | Best Researcher Award

Texas A&M University | United States

 

 

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS

Zainab Ashkanani embarked on her academic journey with a fervent interest in Atomic Molecular research, laying the foundation for her subsequent professional endeavors. Her early academic pursuits encompassed a multidisciplinary approach, delving into fields such as Microbiology & Molecular Biology, Biotechnology, Chemistry, Health Sciences, Biomedical Sciences, Environmental Engineering, and Biological & Agricultural Engineering.

PROFESSIONAL ENDEAVORS

With a robust academic background, Zainab ventured into the realm of scientific research, where she dedicated herself to exploring cutting-edge solutions in various domains. Notably, her professional endeavors have revolved around advancing Advanced Photo-Oxidation Process (AOP) systems to combat oil-contaminated soils in Kuwait. Collaborating with esteemed institutions such as the Kuwait Institute for Scientific Research (KISR), Kuwait Oil Company (KOC), and Kuwait University, she spearheaded initiatives that led to the successful treatment of over 1,500 contaminated soil samples.

CONTRIBUTIONS AND RESEARCH FOCUS

Zainab's contributions extend across a wide spectrum of research areas, showcasing her versatility and expertise. From applying AOP technology for wastewater reuse to identifying bacteria responsible for decomposing human DNA, her research endeavors have made significant strides in addressing pressing global challenges. Noteworthy projects include investigating genes associated with breast cancer, studying lipolytic activity in prostate cancer, and exploring photobiomodulation for multiple sclerosis treatment, highlighting her commitment to advancing medical science.

IMPACT AND INFLUENCE

Zainab's research has had a profound impact on both academic and practical fronts. By developing AI models for monitoring chemical reactions and soil oil-contamination, she has revolutionized the approach to environmental remediation. Her collaboration with organizations like the American Red Cross and the United Nations underscores her dedication to global environmental and sustainable development endeavors, leaving a lasting imprint on humanitarian efforts.

ACADEMIC CITATIONS

Zainab's work has garnered recognition within the scientific community, evident from the numerous citations her research has received. Her contributions to various research fields have been cited extensively, attesting to the significance and relevance of her findings.

LEGACY AND FUTURE CONTRIBUTIONS

As Zainab continues her academic and professional journey, her legacy is poised to endure through her ongoing commitment to scientific innovation and societal impact. With a focus on Atomic Molecular research and interdisciplinary collaboration, she is poised to shape the future of scientific inquiry and environmental sustainability, leaving a lasting legacy for generations to come.

NOTABLE PUBLICATION

AI-assisted systematic review on remediation of contaminated soils with PAHs and heavy metals15 April 2024

 

 

 

Neil Phillips | Atomic Molecular | Outstanding Researcher in Atomic Physics Award

Dr. Neil Phillips | Atomic Molecular | Outstanding Researcher in Atomic Physics Award

Unversity of the West of England | United Kingdom

AUTHOR PROFILE

Scopus

Google Scholar

EARLY ACADEMIC PURSUITS

Neil Phillips embarked on his academic journey with a Bachelor's degree in Electrical and Electronic Engineering from Cardiff University, where he exhibited a keen interest in understanding the intricacies of technology. This foundation laid the groundwork for his subsequent academic pursuits, culminating in a Doctorate from the same institution, specializing in the Application of High-Temperature Superconductors to Electric Drives. His academic endeavors reflect a passion for delving into the fundamental workings of systems and seeking innovative solutions.

PROFESSIONAL ENDEAVORS

Following his academic achievements, Neil transitioned seamlessly into the realm of research and development. His tenure at Dyson Ltd. as a Technology Appraisal Manager showcased his adeptness at managing research teams, evaluating project proposals, and steering the company's research strategy. This experience equipped him with a robust understanding of technological landscapes and honed his skills in project management, financial oversight, and intellectual property management, Atomic Molecular.

CONTRIBUTIONS AND RESEARCH FOCUS

Neil's research trajectory has been marked by a diverse array of projects, ranging from exploring fungal architectures to pioneering advancements in Engineered Living Materials (ELMs) and liquid marble technology. His multidisciplinary approach to research underscores his ability to tackle complex challenges, evidenced by his involvement in projects funded by prestigious entities such as the EU and EPSRC. His contributions to the field extend beyond traditional boundaries, as exemplified by his innovative endeavors in bioelectronics, sustainable technologies, and computational substrates.

IMPACT AND INFLUENCE

Neil's research has garnered significant recognition, with accolades such as the Research Publication of the Year award from the Institute of Biological Engineering and the Vice-Chancellor's Challenge Award for his groundbreaking work on mitigating global warming. His initiatives in public engagement and knowledge exchange underscore his commitment to driving societal impact and fostering scientific literacy. Furthermore, his patents reflect a tangible legacy of innovation, contributing to advancements in areas such as power conversion, motor technology, and floor cleaning devices.

ACADEMIC CITATIONS

Neil's scholarly contributions have left an indelible mark on the academic community, evident from the citations and acknowledgments garnered by his publications. His research outputs have enriched the scientific discourse surrounding topics such as bioelectronics, fungal architectures, and sustainable technologies, Atomic Molecular, cementing his reputation as a thought leader in these domains.

LEGACY AND FUTURE CONTRIBUTIONS

As Neil Phillips continues to chart new frontiers in research and innovation, his legacy resonates through his seminal contributions to science and technology. His unwavering dedication to addressing societal challenges and pushing the boundaries of knowledge serves as an inspiration to future generations of researchers. With his diverse skill set, visionary outlook, and commitment to excellence, Neil remains poised to make enduring contributions to academia, industry, and society at large.

ATOMIC MOLECULAR

Throughout his career, Neil Phillips has demonstrated an atomic focus on understanding the molecular intricacies of various systems, from high-temperature superconductors to fungal architectures. His research endeavors delve into molecular-level phenomena, harnessing the potential of atomic structures to drive technological innovations. Whether exploring the properties of liquid marbles or designing modular bioreactor walls, Neil's work epitomizes a molecular approach to solving real-world problems, propelling scientific understanding and technological advancement forward.

NOTABLE PUBLICATION

No ultrasounds detected from fungi when dehydrated  2023 (1)

Electrical response of fungi to changing moisture content  2023 (4)

Kombucha electronics: electronic circuits on kombucha mats  2023 (4)