Assoc. Prof. Dr. Jonas Duarte | Carbon Allotropes | Outstanding Contribution Award

Assoc. Prof. Dr. Jonas Duarte | Carbon Allotropes | Outstanding Contribution Award

Assoc. Prof. Dr. Jonas Duarte | Federal University of Western Pará | Brazil

Professor Jonas Marinho Duarte is a leading researcher in nanotechnology, with a primary focus on the detection of Majorana fermions and electronic transport phenomena in nanodevices based on the Kitaev chain. His work extensively employs Green’s function methods to model and analyze quantum transport in low-dimensional systems. He also utilizes ab initio calculations to simulate the electronic properties of graphene-like 2D materials, providing insights into charge transport behavior in molecular nanoelectronics. His research spans both one-dimensional and two-dimensional carbon allotropes, exploring their computationally predicted electronic transport properties. He has contributed to the development of nanodevices for potential applications in telecommunications and molecular electronics. Professor Duarte’s publications appear in reputable journals such as Computational Condensed Matter, PHYSICA E, and Optical and Quantum Electronics. His studies combine theoretical modeling with computational simulations to advance understanding of quantum transport mechanisms. He actively collaborates with institutions such as the Federal University of Pará, fostering interdisciplinary research. His contributions have potential implications for future quantum computing and nanoelectronic devices. By integrating concepts from physics, electrical engineering, and materials science, his work bridges fundamental theory and practical applications. Professor Duarte is also engaged in exploring 1D and 2D carbon-based nanomaterials for enhanced electronic functionality. His research provides valuable insights into the design and optimization of nanoscale electronic systems. Through his studies, he continues to push the boundaries of molecular and low-dimensional electronics. His work not only deepens theoretical understanding but also informs experimental approaches in nanodevice fabrication. He is recognized for his innovative applications of computational methods to complex quantum systems, establishing him as a prominent figure in the field of nanotechnology.

Profile: Orcid

Featured Publications

Cardoso, D. H., Miranda, I. R. S., Mota, E. A. V., Duarte, J. M., dos Santos da Silva, S. J., da Silva, C. A. B., & Del Nero, J. (2025). Numerical implementation of phagraphene as patch resonator for a microstrip antenna. Optical and Quantum Electronics.

Quaresma, L. C., Ferreira, D. F. S., Duarte, J. M., Moreira, M. M., da Silva, C. A. B., Jr., & Del Nero, J. (2025, December). Eigenchannel visualization and transition-voltage spectroscopy in two-dimensional C-57 allotrope. Computational Condensed Matter.

Quaresma, L. C., Duarte, J. M., Ferreira, D. F. S., da Silva, C. A. B., Jr., & Del Nero, J. (2025, October). Electronic transport modulation in C-57: A path toward carbon-based logic and switching devices. Physica E: Low-dimensional Systems and Nanostructures.

Duarte, J. M., Santos, J. C. S., Ferreira, D. F. S., Paula, M. V. S., Mota, E. A. V., Silva, C. A. B., & Del Nero, J. (2025, March). Systematic investigation of a metallic quadrilateral nanoribbon graphene allotrope for application in nanoelectronics. Computational Condensed Matter.

Duarte, J. M. (2024, November 1). Metodologias ativas e educação ambiental: uma revisão integrativa sobre abordagens inovadoras para o ensino de energia solar. Ensino e Tecnologia em Revista.

Do Sung Huh | Functional Polymers | Best Researcher Award 

Prof. Do Sung Huh | Functional Polymers | Best Researcher Award 

Inje University | South Korea 

AUTHOR PROFILE

EARLY ACADEMIC PURSUITS

Dr. Do Sung Huh began his academic journey with a Bachelor of Science degree from the Department of Chemical Education at Seoul National University. He then pursued advanced studies at KAIST, earning both his Master's and Ph.D. degrees in the Department of Chemistry. His early academic pursuits laid a strong foundation in chemical education and research, particularly focusing on the synthesis and properties of various chemical compounds, which later evolved into a keen interest in functional polymers.

PROFESSIONAL ENDEAVORS

Dr. Huh has had a distinguished career at Inje University, where he has served as a Professor since March 1989. His academic influence extended internationally when he took on the role of Visiting Professor at West Virginia University from March 1996 to February 1997. Since March 2011, Dr. Huh has also been serving as the Dean of the College of Natural Science at Inje University. His professional endeavors are marked by a commitment to advancing chemical education and research in functional polymers.

CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Huh's research is centered on the synthesis and characterization of conducting polymer composites, the development of functional polymers using the modified breath figure method, and the preparation of moth-eye patterned polymer films with surface functionalization. His work on functional polymers involves innovative methods to enhance the properties and applications of these materials. By modifying polymer surfaces and creating new composite materials, Dr. Huh has contributed significantly to the field of polymer science.

IMPACT AND INFLUENCE

Dr. Huh's impact on the field of chemistry, particularly in the area of functional polymers, is profound. His research has led to the development of new materials with unique properties, which have applications in various industries, including electronics, coatings, and biotechnology. As a leader in his field, Dr. Huh has influenced both his peers and students, fostering a deeper understanding of polymer chemistry. His role as Dean of the College of Natural Science at Inje University further amplifies his influence, as he shapes the future of scientific research and education.

ACADEMIC CITATIONS

Dr. Huh's extensive research has been widely published and cited in numerous scientific journals, reflecting the significance of his contributions to the field. His work on functional polymers is particularly noted for its innovation and practical applications. By focusing on the synthesis and functionalization of polymers, he has provided valuable insights that have been recognized and built upon by other researchers in the field.

LEGACY AND FUTURE CONTRIBUTIONS

Dr. Huh's legacy in the field of polymer chemistry is marked by his pioneering work on functional polymers and conducting polymer composites. His research has not only expanded the theoretical understanding of these materials but has also paved the way for practical applications that benefit various technological fields. Looking ahead, Dr. Huh is expected to continue his groundbreaking work, contributing further to the development of advanced functional materials. His future contributions will likely include new methods for polymer synthesis and functionalization, enhancing the versatility and performance of these essential materials.

FUNCTIONAL POLYMERS

Throughout his career, Dr. Huh has demonstrated a deep expertise in functional polymers, exploring their synthesis, characterization, and applications. His innovative approaches to modifying polymer surfaces and creating new composite materials have set new standards in the field. The development of moth-eye patterned polymer films and other advanced functional materials underscores the practical significance of his research. By focusing on functional polymers, Dr. Huh has significantly contributed to the advancement of materials science, providing new solutions to complex technological challenges.

NOTABLE PUBLICATION