Dr. Huihui Yu | Metal Materials | Best Researcher Award 

Dr. Huihui Yu | Metal Materials | Best Researcher Award 

Dr. Huihui Yu | Institute of Applied Physics, Jiangxi Academy of Sciences | China

Dr. Huihui Yu is a materials scientist whose research centers on the microstructure and property regulation of non-ferrous metals, with a particular emphasis on magnesium and copper alloys. Her studies focus on elucidating the mechanisms that govern the Hall-Petch relationship and understanding the effects of rare earth texture and alloying on grain refinement and strengthening behavior. She has significantly contributed to the theoretical and experimental understanding of twinning, slip systems, and deformation mechanisms in lightweight alloys. Her highly cited works in journals such as Acta Materialia, Journal of Materials Science & Technology, and Journal of Alloys and Compounds have advanced insights into texture-dependent mechanical properties. Dr. Yu’s research extends to developing high-strength, high-conductivity copper-based materials through thermomechanical processing and compositional design. She has been actively involved in several national and provincial scientific projects focusing on rare earth textured magnesium alloys and copper-iron materials. In addition to academic excellence, she has contributed to industrial research on advanced alloy manufacturing and process optimization. Her innovative work has resulted in multiple national patents related to copper alloy production, smelting, purification, and mechanical enhancement devices. Dr. Yu’s research integrates fundamental materials science with applied engineering, promoting the development of next-generation lightweight structural and functional materials. Her contributions have bridged the gap between theoretical modeling and industrial application. Through sustained research and innovation, she continues to advance the understanding of non-ferrous metal strengthening mechanisms. Dr. Yu’s work exemplifies scientific rigor and technological relevance, positioning her as a key contributor to the field of materials science.

Profile: Orcid

Featured Publications

Yu, H., Li, C., Xin, Y., Chapuis, A., Huang, X., & Liu, Q. (2017). The mechanism for the high dependence of the Hall–Petch slope for twinning/slip on texture in Mg alloys. Acta Materialia, 128, 313–326.

Yu, H., Xin, Y., Wang, M., & Liu, Q. (2018). Hall–Petch relationship in Mg alloys: A review. Journal of Materials Science & Technology, 34(2), 248–256. (ESI Highly Cited)

Yu, H., Li, Y., Wang, J., Guan, B., & Xu, J. (2025). Dilute rare earth element mediated Hall–Petch relation of Mg alloys. Journal of Materials Research and Technology, 39, 5499–5507.

Wu, D., Guan, B., Hu, Q., Xu, J., Wang, J., Wu, L., Yu, H., Chen, W., Liu, W., Zou, J., Li, Y., & Huang, G. (2025). Effect of Mg contents on the precipitates and properties of Cu–Ni–Si–Co alloys after thermomechanical treatment. Journal of Alloys and Compounds, 1044, 184437. (Co-corresponding author: H. Yu)

Yu, H., Hu, Q., Huang, Y., Zeng, Y., Jia, J., Hong, R., & Zhang, Y. (2024). Enhanced mechanical properties via the incorporation of Ti in Cu alloys. Archives of Metallurgy and Materials, 69(4), 1345–1352.

 

Assoc. Prof. Dr. Atsuomi Kimura | Experimental Physics | Best Researcher Award 

Assoc. Prof. Dr. Atsuomi Kimura | Experimental Physics | Best Researcher Award 

Assoc. Prof. Dr. Atsuomi Kimura | The University of Osaka | Japan

Dr. Atsuomi Kimura is a highly respected researcher in the field of medical imaging and magnetic resonance technology at Osaka University, where his work focuses on the development and application of hyperpolarized ¹²⁹Xe MRI/MRS for advanced biomedical research. He has made significant contributions to improving imaging sensitivity and diagnostic accuracy, particularly in the study of lung function, disease detection, and therapeutic monitoring. His research emphasizes the innovative use of hyperpolarized noble gases to visualize physiological processes in ways that conventional imaging methods cannot achieve. By combining expertise in pharmacology, medical physics, and biomedical engineering, Dr. Kimura is advancing the integration of nanomedicine and magnetic resonance for precise, non-invasive diagnostic systems. His work on hyperpolarized xenon NMR technology has led to improved robustness, reproducibility, and sustainability, strengthening its application in both medical and materials science. He is deeply committed to translating experimental imaging techniques into practical clinical tools that enhance early disease detection and personalized treatment planning. Through his interdisciplinary approach, he bridges gaps between physics, chemistry, and life sciences, fostering innovations that drive next-generation imaging platforms. His research not only contributes to understanding complex biological systems but also supports the development of highly sensitive lung cancer detection methods. Dr. Kimura is actively involved in several professional societies in Japan, promoting collaboration and knowledge exchange in analytical chemistry and magnetic resonance research. His dedication to scientific advancement, combined with his innovative spirit, continues to influence the global field of medical imaging.

Profiles: Scopus | Orcid

Featured Publications

Kimura, A., Shimokawa, A., Stewart, N. J., Imai, H., & Fujiwara, H. (2025). Relationship between pulmonary gas exchange function and brain uptake dynamics investigated with hyperpolarized ¹²⁹Xe MR imaging and spectroscopy in a murine model of chronic obstructive pulmonary disease. Magnetic Resonance in Medical Sciences.

Fujiwara, H., Imai, H., & Kimura, A. (2025). Proposition of hyper‐chemical exchange saturation transfer subtraction spectroscopy to detect very weak and broad signals hidden under baseline and widen range of materials accessed by hyperpolarized ¹²⁹Xe NMR. ChemPhysChem.

Kimura, A., Shimokawa, A., Stewart, N. J., Hosoi, R., Imai, H., & Fujiwara, H. (2025). Ethyl pyruvate promotes wound healing in elastase-induced lung injury in mice as assessed by hyperpolarized ¹²⁹Xe magnetic resonance imaging. Preprint.

Fujiwara, H., Imai, H., & Kimura, A. (2024). Development of stopped-flow hyper-CEST NMR method on recirculating hyperpolarization system as applied to void space analysis in polymers. Analytical Sciences.

Kimura, A., Utsumi, S., Shimokawa, A., Nishimori, R., Hosoi, R., Stewart, N. J., Imai, H., & Fujiwara, H. (2022). Targeted imaging of lung cancer with hyperpolarized ¹²⁹Xe MRI using surface-modified iron oxide nanoparticles as molecular contrast agents. Cancers, 14(24), 6070.

Assoc. Prof. Dr. Yonko Stoynov | Computational Nanomechanics | Best Researcher Award

Assoc. Prof. Dr. Yonko Stoynov | Computational Nanomechanics | Best Researcher Award

Assoc. Prof. Dr. Yonko Stoynov, Technical University of Sofia, Bulgaria

Dr. Yonko D. Stoynov is a distinguished Bulgarian mathematician and academic based at the Technical University of Sofia, where he has built an extensive career in mathematics education and scientific research. His expertise lies in applied mathematics, numerical analysis, and computational modeling, with a particular emphasis on the mathematical simulation of fracture mechanics and magnetoelectroelastic materials at micro- and nanoscales. He has made significant contributions to the theoretical and computational understanding of material behavior under complex loading conditions, developing numerical methods that provide insights into stress distribution, deformation, and fracture propagation in heterogeneous and functional materials. Dr. Stoynov’s research often bridges the gap between abstract mathematical theory and practical engineering applications, exemplified by his work published in ZAMM – Journal of Applied Mathematics and Mechanics, focusing on the boundary integral equation method for analyzing graded nanocracked magnetoelectroelastic half-planes with nanorelief.

He is proficient in advanced programming and software development, particularly using Fortran and Mathematica to construct simulation models that address intricate problems in materials science and mechanics. His computational approaches contribute to the predictive design and analysis of new materials with coupled magneto-electro-mechanical properties, providing valuable insights for emerging technologies in nanotechnology and smart materials. As an academic, Dr. Stoynov has demonstrated exceptional dedication to teaching, offering lectures, tutorials, and laboratory classes in mathematics, mathematical statistics, and numerical methods. He has also been instrumental in mentoring international students through English-language courses and engaging in numerous scientific and educational projects that promote interdisciplinary collaboration.

Dr. Stoynov’s intellectual pursuits reflect a deep commitment to both research excellence and pedagogical innovation. His ability to translate complex mathematical theories into practical engineering solutions has earned him recognition as a key contributor to Bulgaria’s applied mathematics and computational science community. Through his research, he continues to advance the understanding of material behavior under multi-field coupling effects, while his teaching and mentorship efforts foster the next generation of mathematicians and engineers who can integrate theoretical insight with technological innovation.

Profile: Orcid

Featured Publication

Stoynov, Y. D., Dineva, P. S., & Rangelov, T. V. (2025). Boundary integral equation method for graded nanocracked magnetoelectroelastic half‐plane with nanorelief. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. Advance online publication.