Giovanni Ciccotti – Condensed Matter Physics – Best Researcher Award 

Prof. Giovanni Ciccotti - Condensed Matter Physics - Best Researcher Award 

University Rome Sapienza - Italy

Author Profile

Scopus

Google Scholar

🎓 Early Academic Pursuits

Prof. Giovanni Ciccotti's academic journey began with a strong foundation in condensed matter physics, culminating in a Laurea in Physics cum laude from the University of Roma “La Sapienza” in 1967. His early research was rooted in theoretical physics, particularly within the High Energy Theoretical Group at Rome 1 Physics Department, where he held a CNR Fellowship from 1968 to 1971. These formative years established his expertise in computational physics and statistical mechanics, paving the way for his later groundbreaking contributions to condensed matter physics.

💼 Professional Endeavors

Throughout his distinguished career, Prof. Ciccotti held various prestigious academic and research positions across the globe. He served as a Professore Ordinario of Structure of Matter at the University of Roma "La Sapienza" from 1990 to 2014 and played a pivotal role in molecular physics research. His tenure at institutions such as University College Dublin, Université de Paris VI, and MIT reinforced his reputation as a global leader in condensed matter physics. Additionally, his involvement with the Centre Européen de Calcul Atomique et Moléculaire (CECAM) and CNRS in France demonstrated his commitment to advancing computational methodologies in physics.

🔬 Contributions and Research Focus

Prof. Ciccotti’s research has significantly influenced condensed matter physics, with key contributions in molecular dynamics simulations, statistical mechanics, and atomistic simulations. His pioneering work in computational physics has led to advancements in the understanding of the structure of matter, phase transitions, and complex molecular systems. His collaborations with international institutions and his role as a recipient of the Berni J. Alder CECAM Prize highlight his contributions to numerical methods in molecular simulations. His courses in Atomistic Simulations and Advanced Simulations have been instrumental in training new generations of physicists.

🌍 Impact and Influence

The impact of Prof. Ciccotti’s work is evident in his widespread recognition and numerous honors, including being named a Fellow of the European Physical Society and the Institute of Physics. His Schlumberger Lecture at the University of Cambridge and his position as a Visiting Fellow at Corpus Christi College underscore his influence in the scientific community. His leadership in the creation of a computerized library catalogue for the University of Roma further demonstrates his dedication to academic development.

🏆Academic Cites

Prof. Ciccotti's extensive body of work has been widely cited in scientific literature, solidifying his status as a thought leader in condensed matter physics. His publications have been referenced extensively in studies related to molecular simulations, computational physics, and statistical mechanics. His role as a guest scientist and visiting professor across multiple institutions has further amplified the reach and impact of his research.

🌟 Legacy and Future Contributions

As an Emeritus Professor at "La Sapienza" and UCD, Prof. Ciccotti's legacy is firmly established in the field of condensed matter physics. His groundbreaking research in molecular simulations and statistical mechanics continues to inspire new research directions. His contributions to advanced computational techniques ensure that future generations of physicists will build upon his pioneering work. His involvement in academic institutions worldwide guarantees that his influence in theoretical and computational physics will persist for years to come.

📝Notable Publication


📝A NEMD approach to the melt-front evolution under gravity

Authors: M. Ferrario, Mauro; G. Ciccotti, Giovanni; D. Mansutti, D.; A. DiCarlo, Antonio

Journal: Journal of Chemical Physics

Year: 2025

Citations: 0


📝Nucleation of multi-species crystals: methane clathrate hydrates, a playground for classical force models

Authors: M. Lauricella, Marco; G. Ciccotti, Giovanni; S. Meloni, Simone

Journal: Molecular Physics

Year: 2024

Citations: 0


📝A correct, reversible Trotter splitting for the evolution operator in molecular dynamics simulations of molecular systems with constraints

Authors: C.D. de Michele, Cristiano D.; G. Ciccotti, Giovanni

Journal: Molecular Physics

Year: 2024

Citations: 0


📝Effect of coarse graining in water models for the study of kinetics and mechanisms of clathrate hydrates nucleation and growth

Authors: M. Lauricella, Marco; S. Meloni, Simone; G. Ciccotti, Giovanni

Journal: Journal of Chemical Physics

Year: 2023

Citations: 4


📝Regularized Bennett and Zwanzig free energy estimators

Authors: S. Decherchi, Sergio; G. Ciccotti, Giovanni; A. Cavalli, Andrea

Journal: Journal of Chemical Physics

Year: 2023

Citations: 1


📝Continuum mechanics from molecular dynamics via adiabatic time and length scale separation

Authors: A. DiCarlo, Antonio; S. Bonella, Sara; M. Ferrario, Mauro; G. Ciccotti, Giovanni

Journal: Letters in Mathematical Physics

Year: 2023

Citations: 3

Jose Luis Cuevas Figueroa | Quantum Materials | Best Researcher Award

Dr. Jose Luis Cuevas Figueroa | Quantum Materials | Best Researcher Award 

Universidad Indoamérica | Mexico 

AUTHOR PROFILE

EARLY ACADEMIC PURSUITS

Dr. José Luis Cuevas Figueroa began his academic journey with a Bachelor of Science in Communications and Electronics Engineering from the National Polytechnic Institute, completed in 2006. He then pursued a Master of Science in Communications and Electronics from the same institution, focusing on the electronic properties of semiconductor nanostructures, and graduated in 2009. His master’s thesis explored "Oxygen effects on the electronic properties in SiC nanowires hydrogenated kind β," marking the beginning of his profound interest in quantum materials. He earned his Ph.D. in Communications and Electronics, specializing in Material Science and Nanotechnology, from the National Polytechnic Institute in 2013. His doctoral research further delved into the intricate electronic properties of semiconductor nanostructures, cementing his expertise in the field.

PROFESSIONAL ENDEAVORS

Dr. Cuevas Figueroa has built an illustrious career marked by significant teaching and research roles. From 2014 to 2016, he was a Postdoctoral Fellow at the Metropolitan Autonomous University (UAM), where he conducted groundbreaking research on the design and development of TiO2 nanoparticles doped with copper using the sol-gel method. His work aimed at treating difficult diseases such as cancer and epilepsy. He also taught the subject "nanobiomaterials" to medical students, providing a scientific perspective on the topic. From 2017 to 2019, he served as a Nanotechnology Professor at Yachay Tech University, where he taught various subjects including Physics I and II, introduction to engineering, and nanobiomaterials. His experimental research at Yachay Tech focused on creating new oxide nanomaterials with bactericidal effects and studying the electronic properties and chemical stability of ZnO triangular nanowires doped with chitosan using DFT methodology.

CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Cuevas Figueroa’s research contributions are centered on the electronic properties of semiconductor nanostructures and the development of nanomaterials with advanced functionalities. His work on quantum materials includes the study of electronic properties and chemical stability of various nanostructures using Density Functional Theory (DFT) methodology. He has published numerous articles in high-impact journals, advancing the understanding of how doping and structural modifications affect the behavior of quantum materials. His innovative research on TiO2 and SiC nanostructures has opened new avenues for their application in medical and technological fields.

IMPACT AND INFLUENCE

Dr. Cuevas Figueroa’s research has had a significant impact on the field of quantum materials, particularly in understanding the electronic properties and stability of semiconductor nanostructures. His findings have contributed to the development of new materials with potential applications in treating diseases and in electronic devices. His work has been recognized by prestigious awards and grants from CONAHCyT, including the Level I National System of Researchers distinction from 2014 to 2023 and multiple scholarships for his doctoral and postdoctoral research.

ACADEMIC CITATIONS

Dr. Cuevas Figueroa’s research has been widely cited in the academic community, reflecting the importance and influence of his contributions to quantum materials. His studies on TiO2 and SiC nanostructures have been referenced by researchers exploring similar materials and applications, demonstrating the far-reaching impact of his work. His publications provide critical insights into the electronic properties and potential uses of these materials, solidifying his reputation as a leading researcher in the field.

LEGACY AND FUTURE CONTRIBUTIONS

Dr. Cuevas Figueroa aims to continue his pioneering work in quantum materials, focusing on the development and application of advanced nanostructures. His future contributions are expected to further enhance the understanding and utilization of these materials in various scientific and industrial applications. His legacy will be marked by his dedication to advancing the field of nanotechnology and his influence on both current and future generations of researchers and students.

QUANTUM MATERIALS 

Dr. Cuevas Figueroa’s expertise in quantum materials has positioned him as a key figure in the study of electronic properties and chemical stability of semiconductor nanostructures. His innovative approaches and findings in quantum materials research have significantly advanced the field, contributing to both theoretical knowledge and practical applications. The keywords quantum materials encapsulate the core of his research and its impact on science and technology.

NOTABLE PUBLICATION