Dr. Byunghong Lee | Quantum Materials | Research Excellence Award

Dr. Byunghong Lee | Quantum Materials | Research Excellence Award

Dr. Byunghong Lee | Hyundai Motor Group | South Korea

Dr. Byunghong Lee is a materials scientist with expertise in advanced electrochemical systems and clean energy technologies. His research focuses on transparent photovoltaics, perovskite solar cells, and radiative-cooling materials for energy-efficient applications. He develops electrochromic smart windows and multifunctional nanomaterials for sustainable buildings and smart-city solutions. His work includes designing high-performance metal oxides for energy harvesting and storage systems. He explores hybrid inorganic–organic materials, photonic crystal structures, and advanced carbon materials for multifunctional devices. Dr. Lee has pioneered scalable fabrication processes for low-cost and air-stable perovskite solar cells. He integrates nanostructured materials into electrodes for lithium-metal batteries and supercapacitors. His research emphasizes energy-efficient, multifunctional device architectures. He has contributed to the development of novel photocatalytic and clean-air filtration materials. Dr. Lee’s studies in photonic crystals enable tunable optical and thermal properties for smart surfaces. He has authored numerous high-impact journal papers, patents, and book chapters in energy and materials science. His work has influenced industrial applications in mobility PV and building-integrated solar systems. He actively participates in national and international research initiatives and advisory committees. Dr. Lee’s contributions bridge fundamental materials science with practical energy solutions. His innovations have earned recognition in clean energy, nanomaterials, and photonic technologies.

Profile: Scopus

Featured Publications

Keum, J., Choi, J., Kim, S., Kang, G., Lee, B., Lee, M. J., & Kim, W. (2025). Innovative dual-band energy-efficient smart windows using VO₂(M)-based Fabry–Pérot structures for solar and radiative cooling modulation. Materials Today Physics.

Jung, Y., Pyun, K. R., Yu, S., Ahn, J., Kim, J., Park, J. J., Lee, M. J., Lee, B., Won, D., Bang, J., & Ko, S. H. (2025). Laser-induced nanowire percolation interlocking for ultrarobust soft electronics. Nano Micro Letters.

 

Assist. Prof. Dr. Lilan Zhang | Molecular Physics | Best Researcher Award 

Assist. Prof. Dr. Lilan Zhang | Molecular Physics | Best Researcher Award 

Assist. Prof. Dr. Lilan Zhang | Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences | China

Dr. Zhang Lilan is an Assistant Professor at the Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences. Her research primarily focuses on animal genetics, breeding, and the molecular mechanisms regulating adipose tissue development, fat deposition, and thermogenesis in pigs. She has made notable contributions to understanding the function of beige adipocytes and the genetic regulation of lipid metabolism. Dr. Zhang utilizes molecular biology, bioinformatics, and gene-editing approaches to uncover key regulators of adipogenesis and energy metabolism. Her work explores the adipose-liver-gut axis and its role in fat deposition and metabolic regulation. She has published extensively in high-impact journals including Cells, Protein & Cell, International Journal of Molecular Sciences, and Animal Feed Science and Technology. Dr. Zhang has also co-invented several patents related to regulating lipid metabolism, cold resistance, and ferroptosis in livestock. Her research has advanced insights into gene–environment interactions in animal physiology. She has been recognized with national awards for outstanding research presentations and contributions to animal genetics. Dr. Zhang has successfully led competitive research projects funded by the NSFC and other national programs. Her studies provide a strong foundation for improving meat quality and animal welfare. She is committed to translating molecular discoveries into practical applications in livestock breeding. Her interdisciplinary approach combines genetics, nutrition, and biotechnology. Dr. Zhang’s work strengthens the understanding of molecular regulators of fat deposition in pigs. She continues to contribute to innovations in animal biotechnology. Her research impact is recognized nationally and internationally in the field of animal science.

Profile: Scopus 

Featured Publications

Zhang, L., Hu, S., Cao, C., Chen, C., Liu, J., Wang, Y., Liu, J., Zhao, J., Tao, C., & Wang, Y. (2022). Functional and genetic characterization of porcine beige adipocytes. Cells, 11(751), 1–15.

Liu, J., Jiang, Y., Chen, C., Zhang, L., Wang, J., Yang, C., Wu, T., Yang, S., Tao, C., & Wang, Y. (2024). Bone morphogenetic protein 2 enhances porcine beige adipogenesis via AKT/mTOR and MAPK signaling pathways. International Journal of Molecular Sciences, 25(7), 3915.

Pan, J., Chui, L., Liu, T., Zheng, Q., Liu, X., Liu, L., Zhao, Y., Zhang, L., Song, M., Han, J., Huang, J., Tang, C., Tao, C., Zhao, J., & Wang, Y. (2023). Fecal microbiota was reshaped in ucp1 knock-in pigs via the adipose-liver-gut axis and contributed to less fat deposition. Microbiology Spectrum, 11(1), e03540-22.

Zhong, R., Gao, L., Zhang, L., Huang, Q., Chen, L., & Zhang, H. (2021). Effects of optimal carbohydrases cocktails screened using an in vitro method on nutrient and energy digestibility of different fiber source diets fed to growing pigs. Animal Feed Science and Technology, 271, 114728.

Liang, X., Tao, C., Pan, J., Zhang, L., Liu, L., Zhao, Y., Fan, Y., Cao, C., Liu, J., Zhang, J., Lam, S. M., Shui, G., Jin, W., Li, W., Zhao, J., Li, L., & Wang, Y. (2020). Rnf20 deficiency in adipocyte impairs adipose tissue development and thermogenesis. Protein & Cell, 12(6), 475–492.