Dr. Geetha D. V. | Crystallography | Best Researcher Award

Dr. Geetha D. V. | Crystallography | Best Researcher Award

Dr. Geetha D. V. | University of Mysore | India

Dr. Geetha D. V.’s research primarily focuses on the structural analysis and characterization of biologically and medicinally relevant compounds. She extensively utilizes X-ray crystallography and powder diffraction techniques to elucidate the three-dimensional structures of heterocyclic compounds, chalcones, indole derivatives, and hydrazones, providing detailed insights into their molecular packing and intermolecular interactions. Her work integrates quantum chemical computations, particularly Density Functional Theory (DFT), to investigate electronic properties, spectroscopic behavior, and reactivity patterns of novel molecules. She applies molecular docking and molecular dynamics simulations to study ligand–protein interactions, with special attention to antiviral targets like SARS-CoV-2 proteins, highlighting critical residues and interaction mechanisms. Additionally, Dr. Geetha explores Hirshfeld surface analysis to visualize and quantify intermolecular contacts and non-covalent interactions. Her research extends to the design and synthesis of novel heterocyclic molecules, combining experimental and computational approaches for structure–activity correlation. She has contributed to understanding drug-like properties, binding affinities, and stability profiles of therapeutic candidates. Her studies also involve electrostatic potential mapping, frontier molecular orbital analysis, and hydrogen-bonding evaluation, providing predictive insights for biological activity. The integration of crystallography, computational chemistry, and in-silico studies allows her to develop a comprehensive understanding of molecular behavior in both solid-state and biological environments. Her work consistently emphasizes innovation, molecular-level insight, and application to pharmacologically relevant systems, bridging experimental and theoretical chemistry. Dr. Geetha’s research contributes to rational drug design, molecular recognition studies, and advanced material analysis, reflecting a strong interdisciplinary approach in physical, computational, and medicinal chemistry.

Profile: Scopus 

Featured Publications

Karthik, V., Santhosh, C., Geetha, D. V., Chandini, K. M., Sindogi, K., Sridhar, M. A., & Sadashiva, M. P. (2026). Multifaceted exploration of benzyl 5-(p-tolyl)-1,3,4-thiadiazole-2-carboxylate: Spectroscopic, structural, and computational insights into its drug-like potential. Journal of Molecular Structure, 1350, 143963.

Geetha, D. V., Harisha, A. S., Karthik, V., Chanadana, S. N., Kavitha, H. D., Lakshminarayana, B. N., & Sridhar, M. A. (2026). X-ray structural analysis, quantum chemical computations, molecular docking, and molecular dynamics simulations of diethyl 5’-amino-3,3-dibromo-2,6-dicyano-1,2,3,4-tetrahydro-[1,1.3,1-terphenyl] 2,4-dicarboxylate. Journal of Molecular Structure, 1351, 144142.

Lakshminarayana, B. N., Sreenatha, N. R., Sharath, C. L., Geetha, D. V., Shivakumar, N., & Balakrishna, K. (2025). Synthesis and comparative investigations of DFT/B3LYP, B3PW91, CAM-B3LYP and HSEH1PBE methods applied to molecular structure, spectroscopic analysis, electronic properties of a novel hydrazone having triazole and pyrazole moiety. Results in Chemistry.

Al-Ostoot, F. H., Akhileshwari, P., Kameshwar, V. H., Geetha, D. V., Aljohani, M. S., Alharbi, H. Y., Khanum, S. A., & Sridhar, M. A. (2024). Structural and theoretical exploration of a multi-methoxy chalcone: Synthesis, quantum theory, electrostatics, molecular packing, DFT analysis, and in-silico anti-cancer evaluation. Heliyon, e33814.

Geetha, D. V., Sharath, C. L., Shivakumar, N., Lakshminarayana, B. N., Chandini, K. M., & Balakrishna, K. (n.d.). Novel series of hydrazones carrying pyrazole and triazole moiety: Synthesis, structural elucidation, quantum computational studies and antiviral activity against SARS-Cov-2.

Dr. Adewumi Oluwole | Particle Physics | Best Researcher Award 

Dr. Adewumi Oluwole | Particle Physics | Best Researcher Award 

Dr. Adewumi Oluwole | University of Pretoria | South Africa

Dr. Adewumi Olufemi Oluwole is a passionate research chemist specializing in the design, synthesis, and characterization of advanced nanocomposite materials for environmental remediation and energy storage applications. His work focuses on the degradation of pharmaceutical pollutants, agrochemicals, and industrial and domestic wastes using innovative photocatalytic and nanomaterial-based approaches. He has extensive expertise in graphitic carbon nitride, heterostructured nanocomposites, and ternary heterojunctions. Adewumi applies techniques such as XRD, FTIR, SEM-EDS, HRTEM, UV-Vis, PL, EIS, and BET to investigate material properties and performance. His research interests also include biosensor development, drug delivery systems, and renewable energy storage technologies. He has successfully synthesized novel nanomaterials with enhanced photocatalytic efficiency and energy storage capabilities. Adewumi has authored multiple high-impact publications in journals such as RSC Advances, Journal of Environmental Chemical Engineering, and Journal of Water Process Engineering. He is skilled in supervising and mentoring undergraduate and postgraduate students and managing complex research projects. Adewumi is experienced in presenting research findings at local and international conferences, demonstrating strong communication expertise. His work contributes significantly to sustainable environmental solutions and advanced material science. He is recognized for his innovative approaches in photocatalysis and pollutant degradation studies. Adewumi combines technical proficiency with effective project management and collaboration skills. His research continues to explore multifunctional nanocomposites for practical environmental and energy applications. Adewumi’s dedication to scientific innovation and academic excellence has positioned him as a leading researcher in environmental nanomaterials. His contributions have a notable impact on both fundamental research and applied chemical engineering solutions.

Profile: Google Scholar

Featured Publications

Oluwole, A. O., Omotola, E. O., & Olatunji, O. S. (2020). Pharmaceuticals and personal care products in water and wastewater: A review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation. BMC Chemistry, 14(1), 62.

Oluwole, A. O., & Olatunji, O. S. (2022). Photocatalytic degradation of tetracycline in aqueous systems under visible light irradiation using needle-like SnO₂ nanoparticles anchored on exfoliated g-C₃N₄. Environmental Sciences Europe, 34(1), 5.

Omotola, E. O., Oluwole, A. O., Oladoye, P. O., & Olatunji, O. S. (2022). Occurrence, detection and ecotoxicity studies of selected pharmaceuticals in aqueous ecosystems: A systematic appraisal. Environmental Toxicology and Pharmacology, 91, 103831.

Olufemi Oluwole, A., Khoza, P., & Olatunji, O. S. (2022). Synthesis and characterization of g-C₃N₄ doped with activated carbon (AC) prepared from grape leaf litters for the photocatalytic degradation of enrofloxacin. ChemistrySelect, 7(45), e202203601.

Oluwole, A. O., & Olatunji, O. S. (2023). Synthesis and characterization of binary bismuth tungstate-graphitic carbon nitride (BWO/g-C₃N₄) heterojunction nanocomposites for efficient photodegradation of ibuprofen in aqueous media. Journal of Water Process Engineering, 54,

 

Dr. Adane Kassa | Biophysics | Editorial Board Member

Dr. Adane Kassa | Biophysics | Editorial Board Member

Dr. Adane Kassa | Debre Markos University | Ethiopia

Adane Kassa is a prominent chemist specializing in environmental chemistry, electrochemistry, and materials science. His research focuses on developing eco-friendly and low-cost adsorbents for industrial dye removal, promoting sustainable practices in water treatment. He has extensively worked on the design and application of novel electrochemical sensors for detecting pharmaceuticals and organophosphate pesticides in environmental samples. Kassa’s contributions include advancing voltammetric techniques and creating sensitive analytical methods for environmental monitoring. He has synthesized and characterized metal-organic complexes, including cobalt and manganese derivatives, with notable antibacterial and electrochemical properties. His work bridges fundamental chemistry and practical environmental solutions. Kassa has published in high-impact journals such as Desalination and Water Treatment, ACS Omega, and Journal of Applied Electrochemistry. His studies emphasize sustainability, green chemistry, and cost-effective materials for industrial and environmental applications. He integrates innovative analytical techniques with material design to address real-world challenges. Kassa’s research contributes to safer environmental practices and improved monitoring of pollutants. He demonstrates expertise in chemical synthesis, electrochemical characterization, and sensor development. His interdisciplinary approach connects chemistry, materials science, and environmental engineering. Kassa’s publications showcase his commitment to advancing knowledge in applied and experimental chemistry. He continues to explore new materials and methods for environmental and electrochemical applications. His work impacts both academic research and practical industrial solutions. Overall, Adane Kassa is recognized for his significant contributions to analytical chemistry, sustainable materials, and environmental protection.

Profile: Orcid 

Featured Publications

Kassa, A., Engida, A., & Endaye, M. (2025). Eco-friendly adsorbents for industrial dye removal: A comprehensive review of low-cost alternatives. Desalination and Water Treatment.

Ejigu, A., Tefera, M., Guadie, A., Abate, S. G., & Kassa, A. (2025). A review of voltammetric techniques for sensitive detection of organophosphate pesticides in environmental samples. ACS Omega.

Kassa, A., Abebe, A., Biresaw, M., & Tigineh, G. T. (2024). Application of a synthesized novel poly(μ-(4,4’-bipyridine(bis(1,10-phenanthroline))cobalt(II) chloride)) modified glassy carbon electrode for selective differential pulse voltammetric determination of ciprofloxacin in real samples. SSRN.

Zihon, M., Kassa, A., Tigineh, G. T., Chanie, G., Tesfaye, D., Gebrezgiabher, M., Metto, M., Alem, M. B., Abebe, A., & Thomas, M. (2024). Manganese(II) resorcinolate complex: Synthesis, characterizations, electrochemical behavior, and antibacterial activities. Journal of Applied Electrochemistry.

Dr. Chris Jeynes | Irreversible Thermodynamics | Best Researcher Award 

Dr. Chris Jeynes | Irreversible Thermodynamics | Best Researcher Award 

Dr. Chris Jeynes | Independent scholar, Tredegar, Wales | United Kingdom

Professor Christopher Jeynes is an internationally respected physicist known for his pioneering work in ion beam analysis (IBA), thin film characterisation, and precision materials metrology. Based for most of his career at the University of Surrey’s Ion Beam Centre, he played a leading role in developing IBA into a world-class analytical technique for quantitative materials characterisation. He co-developed the IBA DataFurnace, a globally recognised analytical code, and was the first to demonstrate one-percent absolute accuracy in Rutherford backscattering spectrometry, establishing it as a primary reference method for determining material composition. His work led to the first ISO 17025 accreditation of an IBA laboratory as a calibration facility. Professor Jeynes has contributed extensively to international scientific standards and data quality through collaborations with the International Atomic Energy Agency (IAEA) and the Bureau International des Poids et Mesures (BIPM). He has published more than 300 papers and several influential book chapters shaping the field of ion beam techniques. His research emphasises self-consistent data fitting to minimise systematic uncertainty and improve analytical reliability. Beyond IBA, he has been instrumental in developing the emerging discipline of Quantitative Geometrical Thermodynamics with Dr. Mike Parker, linking geometry and thermodynamics to new theoretical insights. His contributions have had lasting impact on materials science, analytical accuracy, and interdisciplinary physical theory.

Profiles: Scopus | Orcid

Featured Publications

Jeynes, C., & Parker, M. C. (2023, February 23). Relating a system’s Hamiltonian to its entropy production using a complex-time approach [Preprint]. Preprints.

Jeynes, C. (2023). How “Berry phase” analysis of non-adiabatic non-Hermitian systems reflects their geometry. Entropy, 25(2), 390.

Jeynes, C. (2023). Thermodynamics: The new theory of everything? Open Access Government.

Jeynes, C., Parker, M. C., & Barker, M. (2023). The poetics of physics. Philosophies, 8(1), 3.

Evaristo, M., Fernandes, F., Jeynes, C., & Cavaleiro, A. (2023). The influence of H content on the properties of a-C(W):H coatings. Coatings, 13(1), 92.

Velazquez, L., Parker, M. C., & Jeynes, C. (2022, July 6). The geometry of thermodynamics III [Preprint]. Preprints.

Parker, M. C., & Jeynes, C. (2021). A relativistic entropic Hamiltonian–Lagrangian approach to the entropy production of spiral galaxies in hyperbolic spacetime. Universe, 7(9), 325.

Parker, M. C., & Jeynes, C. (2021, April 2). The entropy production of galaxies [Preprint]. Preprints.