Prof. Dr. Jun Zhong | Modeling and Simulation | Best Researcher Award

Prof. Dr. Jun Zhong | Modeling and Simulation | Best Researcher Award

Prof. Dr. Jun Zhong | NCIAE | China

Jun Zhong is a leading researcher in computational materials science, focusing on the atomistic modeling of materials physics and chemistry. He specializes in molecular dynamics, density functional theory, and multi-scale simulations to study adhesion, lubrication, wear mechanisms, and corrosion inhibition in metals and alloys. His work includes the development of MEAM interatomic potentials and modeling surface segregation phenomena in advanced materials. He has investigated catalyst performance, mechanical-electrical property regulation, and deformation mechanisms in metals, composites, and graphene foams. Zhong has contributed to understanding nano-scale interactions, alloy surface behaviors, and interface adhesion. His research integrates computational and theoretical approaches to address challenges in aerospace materials, nanomaterials, and renewable energy technologies. He has authored high-impact publications in journals such as Phys. Rev. B, J. Phys. Chem. C, and Applied Surface Science. He has also written influential monographs on tribology, adhesion, and nanomechanics, widely recognized in the scientific community. Zhong has presented his work at numerous international conferences and workshops. He has been elected Member of the Institute of Physics (MInstP, UK) and recognized as a world-class scientific monograph author. His teaching excellence has been acknowledged in both China and the U.S. He has led and participated in multiple national and international research projects. His studies bridge atomistic modeling and practical applications, advancing materials engineering and aerospace technologies. His research impacts surface phenomena, alloy design, and energy-related materials. Zhong continues to push the boundaries of computational materials science, integrating theory and simulation for innovative solutions.

Profile: Orcid

Featured Publications

Zhang, Y., Zhu, H., Liu, F., Zhong, J., Lu, W., Wang, C., Wang, L., Wu, Z., & Li, B. (2025). Influence and regulation of amorphous layers on phonon transport at SiC/Si interface. International Journal of Heat and Mass Transfer.

Zhang, H., Xu, S., Zou, S., Zhou, H., Ouyang, W., & Zhong, J. (2025). Gas–solid phase separation of active Brownian particles under confinement of hard walls. Nanomaterials.

Ning, Y.-Q., Zhong, J., Jie, A., Zhou, X., Xue, X.-X., Ang, Y. S., & Zhao, Y.-Q. (2025). Designing the weak Fermi pinning and ferromagnetic van der Waals contacts to bilayer CrI3. Applied Physics Letters.

Nie, G., Zhong, F., Zhong, J., Zhu, H., & Zhao, Y.-Q. (2024). Engineering photoelectric conversion efficiency in two-dimensional ferroelectric Cs2PbI2Cl2/Sc2CO2 heterostructures. Applied Physics Letters, 124, 252903.

Nie, G., Zhong, F., Zhong, J., Zhu, H., & Zhao, Y.-Q. (2024). Engineering photoelectric conversion efficiency in two-dimensional ferroelectric Cs2PbI2Cl2/Sc2CO2 heterostructures. Applied Physics Letters.

 

Dr. Geetha D. V. | Crystallography | Best Researcher Award

Dr. Geetha D. V. | Crystallography | Best Researcher Award

Dr. Geetha D. V. | University of Mysore | India

Dr. Geetha D. V.’s research primarily focuses on the structural analysis and characterization of biologically and medicinally relevant compounds. She extensively utilizes X-ray crystallography and powder diffraction techniques to elucidate the three-dimensional structures of heterocyclic compounds, chalcones, indole derivatives, and hydrazones, providing detailed insights into their molecular packing and intermolecular interactions. Her work integrates quantum chemical computations, particularly Density Functional Theory (DFT), to investigate electronic properties, spectroscopic behavior, and reactivity patterns of novel molecules. She applies molecular docking and molecular dynamics simulations to study ligand–protein interactions, with special attention to antiviral targets like SARS-CoV-2 proteins, highlighting critical residues and interaction mechanisms. Additionally, Dr. Geetha explores Hirshfeld surface analysis to visualize and quantify intermolecular contacts and non-covalent interactions. Her research extends to the design and synthesis of novel heterocyclic molecules, combining experimental and computational approaches for structure–activity correlation. She has contributed to understanding drug-like properties, binding affinities, and stability profiles of therapeutic candidates. Her studies also involve electrostatic potential mapping, frontier molecular orbital analysis, and hydrogen-bonding evaluation, providing predictive insights for biological activity. The integration of crystallography, computational chemistry, and in-silico studies allows her to develop a comprehensive understanding of molecular behavior in both solid-state and biological environments. Her work consistently emphasizes innovation, molecular-level insight, and application to pharmacologically relevant systems, bridging experimental and theoretical chemistry. Dr. Geetha’s research contributes to rational drug design, molecular recognition studies, and advanced material analysis, reflecting a strong interdisciplinary approach in physical, computational, and medicinal chemistry.

Profile: Scopus 

Featured Publications

Karthik, V., Santhosh, C., Geetha, D. V., Chandini, K. M., Sindogi, K., Sridhar, M. A., & Sadashiva, M. P. (2026). Multifaceted exploration of benzyl 5-(p-tolyl)-1,3,4-thiadiazole-2-carboxylate: Spectroscopic, structural, and computational insights into its drug-like potential. Journal of Molecular Structure, 1350, 143963.

Geetha, D. V., Harisha, A. S., Karthik, V., Chanadana, S. N., Kavitha, H. D., Lakshminarayana, B. N., & Sridhar, M. A. (2026). X-ray structural analysis, quantum chemical computations, molecular docking, and molecular dynamics simulations of diethyl 5’-amino-3,3-dibromo-2,6-dicyano-1,2,3,4-tetrahydro-[1,1.3,1-terphenyl] 2,4-dicarboxylate. Journal of Molecular Structure, 1351, 144142.

Lakshminarayana, B. N., Sreenatha, N. R., Sharath, C. L., Geetha, D. V., Shivakumar, N., & Balakrishna, K. (2025). Synthesis and comparative investigations of DFT/B3LYP, B3PW91, CAM-B3LYP and HSEH1PBE methods applied to molecular structure, spectroscopic analysis, electronic properties of a novel hydrazone having triazole and pyrazole moiety. Results in Chemistry.

Al-Ostoot, F. H., Akhileshwari, P., Kameshwar, V. H., Geetha, D. V., Aljohani, M. S., Alharbi, H. Y., Khanum, S. A., & Sridhar, M. A. (2024). Structural and theoretical exploration of a multi-methoxy chalcone: Synthesis, quantum theory, electrostatics, molecular packing, DFT analysis, and in-silico anti-cancer evaluation. Heliyon, e33814.

Geetha, D. V., Sharath, C. L., Shivakumar, N., Lakshminarayana, B. N., Chandini, K. M., & Balakrishna, K. (n.d.). Novel series of hydrazones carrying pyrazole and triazole moiety: Synthesis, structural elucidation, quantum computational studies and antiviral activity against SARS-Cov-2.

Dr. Majid Shahbabaei | Transport and Separation | Best Researcher Award 

Dr. Majid Shahbabaei | Transport and Separation | Best Researcher Award 

Dr. Majid Shahbabaei | Oden Institute for Computational Engineering and Sciences | United States

Majid Shahbabaei is a computational materials theorist whose research focuses on advancing clean water, clean energy, and environmental sustainability through molecular-level investigation of transport phenomena in soft and nanostructured materials. He employs molecular dynamics simulations, density functional theory, and multi-physics modeling to uncover the mechanisms governing ion separation, water purification, nanopore transport, and electrochemical processes. His work spans membrane desalination, reverse electrodialysis energy harvesting, heavy-metal removal, lithium-ion recovery, gas separation, and protein sequencing using solid-state nanopores. Shahbabaei has made significant contributions to understanding transport in graphene-based membranes, polymer-derived carbon membranes, covalent- and metal–organic framework membranes, and zwitterion-functionalized nanopores. His research bridges materials science, nanofluidics, biophysics, and computational chemistry to provide design principles for next-generation membranes and electrochemical systems. He has published extensively on aquaporin-inspired channels, ion selectivity in functionalized membranes, and confined fluid behavior in low-dimensional systems. His studies also explore self-healing polymer electrodes, COF/MOF hybrid architectures, and hydration-driven ion transport in graphene oxide nanochannels. Shahbabaei’s work combines theoretical modeling with experimental frameworks to enhance water and energy technologies. He has collaborated internationally on projects in wastewater purification, thin-film nanocomposite membranes, and battery material recovery. Supported by competitive research grants, he leads in computational approaches for sustainable membrane and energy design. His contributions provide fundamental insights into fluid transport, interfacial interactions, and multi-physics behavior in nanostructured materials. By integrating theory and simulation, his research guides the development of efficient, high-performance filtration and separation systems. His interdisciplinary approach addresses urgent environmental and health challenges. Through innovative computational strategies, Shahbabaei continues to influence the design of advanced materials for energy, water, and environmental applications. His work demonstrates a vision for sustainable technologies grounded in molecular-level understanding and predictive modeling.

Profiles: Scopus | Google Scholar

Featured Publication

Saedodin, S., & Shahbabaei, M. (2013). Thermal analysis of natural convection in porous fins with homotopy perturbation method (HPM). Arabian Journal for Science and Engineering, 38(8), 2227–2231.

Shahbabaei, M., & Kim, D. (2017). Molecular dynamics simulation of water transport mechanisms through nanoporous boron nitride and graphene multilayers. The Journal of Physical Chemistry B, 121(16), 4137–4144.

Shahbabaei, M., Tang, D., & Kim, D. (2017). Simulation insight into water transport mechanisms through multilayer graphene-based membrane. Computational Materials Science, 128, 87–97.

Shahbabaei, M., & Kim, D. (2017). Transport of water molecules through noncylindrical pores in multilayer nanoporous graphene. Physical Chemistry Chemical Physics, 19(31), 20749–20759.

Shahbabaei, M., & Kim, D. (2021). Advances in nanofluidics for water purification and filtration: Molecular dynamics (MD) perspective. Environmental Science: Nano, 8(8), 2120–2151.