Snehal Kadam – Material Science – Best Researcher Award

Dr. Snehal Kadam - Material Science - Best Researcher Award 

Seoul National University of Science and Technology - South Korea 

Author Profile

Google scholar

Scopus

Orcid

 

🎓 Early Academic Pursuits

Dr. Snehal Kadam's academic journey is marked by consistent excellence and a strong foundation in Material Science. She completed her Ph.D. in Physics from the Department of Physics, The Institute of Science, Mumbai University in 2021. Her thesis, titled “Studies on Synthesis and Characterization of Reduced Graphene Oxide, Manganese Oxide, Cobalt Oxide and its Composites as Electrode Material in Electrochemical Supercapacitor,” was supervised by Prof. Shrinivas B. Kulkarni. She also holds an M.Sc. in Physics with a specialization in Energy Studies from Shivaji University, Kolhapur, where she worked on the project “Synthesis of Indium Oxide by Hydrothermal Method for Gas Sensor Application,” under the guidance of Prof. P.S. Patil. Her educational background is further solidified by a B.Sc. in Physics from Solapur University, showcasing her strong foundation in Material Science.

💼 Professional Endeavors

Dr. Kadam's professional career is distinguished by her contributions to Material Science through various research positions. Currently, she is a Brainpool Fellow at Seoul National University of Science and Technology (SEOULTECH), working under the mentorship of Prof. Jong G. Ok. Prior to this, she served as a Postdoctoral Researcher at the Advanced Materials Research Institute, Seoul National University, under the mentorship of Prof. Eun Soo Park. Her earlier roles include a BK21 Postdoctoral Researcher at the Department of Materials Science & Engineering, Seoul National University, and multiple research fellowships at The Institute of Science, Mumbai, funded by prestigious bodies like CSIR and DAE-BRNS.

🔬 Contributions and Research Focus

Dr. Kadam's research focus lies in the synthesis and characterization of nanostructured electrode materials for energy storage applications, a crucial aspect of Material Science. Her work includes the development of high entropy ceramics and silicides, the synthesis of reduced graphene oxide (RGO), and the fabrication of flexible solid-state symmetric supercapacitors. She has made significant strides in developing single-phase high entropy silicide-based alloys and their applications as electrode materials, demonstrating her expertise in Material Science and its practical applications.

🌍 Impact and Influence

Dr. Kadam's research has significantly impacted the field of Material Science, particularly in the development of novel materials for energy storage. Her work on nanostructured electrodes and high entropy materials has the potential to revolutionize energy storage technologies, making them more efficient and sustainable. Her contributions are recognized through various awards, including the Late Dr. Sumati & Vasudeo Bhide IWSA Award and multiple research fellowships.

🏆Academic Cites

Dr. Kadam's research has been cited in numerous academic publications, reflecting the significance of her work in Materials Science. Her legacy is one of innovation and excellence in research, particularly in the synthesis and application of nanostructured materials for energy storage. As she continues her career, her work is expected to pave the way for further advancements in the field, particularly in the development of high-performance materials for supercapacitors and other energy storage devices.

🌟 Legacy and Future Contributions

As Dr. Kadam continues her research, her legacy in Material Science is expected to grow, with further innovations in electrode materials and energy storage applications. Her work not only contributes to the academic community but also has practical implications for the development of sustainable energy solutions. Dr. Kadam’s ongoing research will likely continue to shape the future of Material Science, leaving a lasting impact on the field.

Notable Publication


📝Synthesis, Characterizations, and Hydrogen Sulfide Gas Sensing Application of BiOx (x= 1, 1.5) Nanostructures

Authors: KD Bhalerao, YT Nakate, SP Choudhury, UT Nakate, MA Yewale

Journal: International Journal of Hydrogen Energy

Year: 2023


📝Role of Deposition Temperature on Physical and Electrochemical Performance of Manganese Oxide Electrode Material for Supercapacitor Application

Authors: SBK Snehal L.Kadam, Rahul S.Ingole, Nidhi G.Tiwari, Umesh T.Nakate, Yogesh.T.

Journal: Materials Science and Engineering: B

Year: 2022


📝Tuning the Supercapacitive Performance of Vanadium Oxide Electrode Material by Varying the Precursor Solution Concentration

Authors: RS Ingole, SL Kadam, SB Kulkarni, BJ Lokhande

Journal: Thin Solid Films

Year: 2020


📝Time-Intended Effect on Electrochemical Performance of Hydrothermally Reduced Graphene Oxide Nanosheets: Design and Study of Solid-State Symmetric Supercapacitor

Authors: SL Kadam, SM Mane, RS Ingole, SS Dhasade, JC Shin, SB Kulkarni

Journal: Journal of Materials Science: Materials in Electronics

Year: 2021


📝Effect of Solution Concentration and Electrolytes on the Electrochemical Performance of Hydrothermally Synthesized Reduced Graphene Oxide

Authors: SBK Snehal L.Kadam, Rahul S.Ingole, Umesh T.Nakate, Nidhi G.Tiwari, Sagar M.

Journal: Materials Letters

Year: 2021


📝Electrochemical Synthesis of Flower-like Mn-Co Mixed Metal Oxides as Electrode Material for Supercapacitor Application

Author: SL Kadam

Journal: Current Applied Physics

Year: 2018


📝Structural, Magnetic and Dielectric Relaxation Behaviour Study of La2MnCoO6 and Fully Substituted B-Site La2FeCoO6

Authors: PM Tirmali, DK Mishra, BP Benglorkar, SM Mane, SL Kadam, SB Kulkarni

Journal: Journal of the Chinese Advanced Materials Society

Year: 2018

Muhammad Khalid hussain | Material Science | Best Researcher Award

Dr. Muhammad Khalid hussain | Material Science | Best Researcher Award

Australian National University | Australia

AUTHOR PROFILE

EARLY ACADEMIC PURSUITS

Muhammad Khalid Hussain pursued his early academic journey in Physics, demonstrating a strong interest in material science from the onset of his educational career. His Bachelor of Science in Physics (Hons) from the University of Gujrat laid the foundation for his future research endeavors.

PROFESSIONAL ENDEAVORS

Transitioning from his undergraduate studies, Hussain pursued a Master of Philosophy in Physics, specializing in the field of photocatalysis. His research focused on the development of Ag2O/Cu-TiO2 nanocomposites for the photocatalytic conversion of CO2 into CH4. This marked his entry into the realm of advanced materials and their applications.

CONTRIBUTIONS AND RESEARCH FOCUS

Throughout his academic journey, Hussain has made significant contributions to the field of material science, particularly in the areas of photocatalysis, electrocatalysis, and environmental remediation. His research projects have explored various aspects of nanostructure synthesis, characterization, and application, aiming to address pressing global challenges such as wastewater treatment and energy conversion.

IMPACT AND INFLUENCE

Hussain's research outputs have been published in reputable scientific journals, showcasing the impact of his work on the scientific community. His publications have contributed valuable insights into the development of novel materials for sustainable energy production and environmental protection.

ACADEMIC CITES

Hussain's research findings have garnered attention within the academic community, as evidenced by citations in prominent journals and conferences. His work has been recognized for its innovation and relevance to contemporary challenges in material science and environmental sustainability.

LEGACY AND FUTURE CONTRIBUTIONS

As a Visiting Research Fellow at the Australian National University, Hussain continues to pursue cutting-edge research in material science, with a focus on advancing the field of photocatalysis and electrocatalysis. His interdisciplinary approach and dedication to scientific inquiry position him as a promising researcher with the potential to make significant contributions to the field in the years to come.

MATERIAL SCIENCE

Muhammad Khalid Hussain's academic journey and research endeavors underscore his profound interest and expertise in material science. From his early academic pursuits to his current role as a Visiting Research Fellow, Hussain has demonstrated a relentless commitment to advancing the frontiers of material science through innovative research, impactful publications, and academic leadership.

NOTABLE PUBLICATION