Dr. Fatma Ouled Saad | Experimental Physics | Best Researcher Award

Dr. Fatma Ouled Saad | Experimental Physics | Best Researcher Award

Dr. Fatma Ouled Saad | ENIM | Tunisia

Ouled Saad Fatma is a researcher in energetic engineering whose work focuses on thermal processes, renewable energy systems, and advanced methods for improving energy efficiency. She has contributed to the development and optimization of solar desalination technologies, particularly through innovative mechanisms designed to enhance solar still productivity and overall thermal performance. Her studies also explore the application of phase change materials to improve heat storage and transfer, supporting more effective energy capture and utilization in sustainable systems. Beyond renewable technologies, she has conducted significant research in electrical resistance tomography, offering new approaches for analyzing material properties and characterizing porosity in complex media. Her academic contributions extend to teaching and supervising projects in areas such as thermodynamics, fluid mechanics, refrigeration systems, sensors, and materials science, where she plays an active role in guiding students in applied engineering practices. Through her combined efforts in research, teaching, and project supervision, she consistently promotes innovative thinking and practical solutions in energy engineering. Her work reflects a strong commitment to advancing environmentally responsible technologies and improving the performance of thermal and energy systems. She is recognized for her ability to integrate experimental methods with analytical modeling to address engineering challenges. Her diverse contributions support progress in sustainable energy, applied thermal sciences, and diagnostic techniques for engineering materials.

Profile: Scopus 

Featured Publications

Ouled Saad, F., Madiouli, J., Mihoubi, D., Shigidi, I., & Sghaier, J. (2026). Estimating talc and cellulose porosity under mechanical dewatering using electrical resistance tomography technique. Flow Measurement and Instrumentation, 107, 103124.

Ouled Saad, F., Madiouli, J., Chemkhi, S., Mankai, S., & Shigidi, I. (2024). Increasing the productivity and the thermal efficiency of conventional solar stills using a new rotating discs mechanism. International Journal of Environmental Science and Technology. (Advance online publication)

Ouled Saad, F., Mankai, S., Madiouli, J., Chemkhi, S., Shigidi, I., & Khan, M. I. (2024). Effect of phase change materials melting temperature on improving single slope solar still productivity. Journal of Energy Storage. (Advance online publication)

Ouled Saad, F., Aymen, S., Madiouli, J., Jalila, S., & Olivier, F. (2016). Quadrupole method: A new approach for solving the direct problem of electrical resistance tomography. Journal of King Saud University – Science.

 

Prof. Dr. Saeed Jafarirad | Biophysics | Best Researcher Award 

Prof. Dr. Saeed Jafarirad | Biophysics | Best Researcher Award 

Prof. Dr. Saeed Jafarirad | University of Tabriz | Iran

Dr. Saeed Jafarirad is a leading researcher in polymer chemistry, green nanotechnology, and biomaterials, recognized for his extensive contributions to biogenic nanostructures, eco-friendly nanoparticle synthesis, and advanced polymeric systems. His work integrates supramolecular chemistry, dendritic and polymeric architectures, cellulose-based and chitosan-based biopolymers, and innovative nano-drug delivery systems designed for therapeutic and theranostic applications. He has produced a large body of scientific output, including book chapters in major biomedical polymer encyclopedias, dozens of peer-reviewed journal articles, numerous conference presentations, national patents, and a wide range of scientific and industrial research projects. His recent publications highlight breakthroughs in slow-release nanofertilizers, phytochemical-mediated magnetic nanocomposites, and enhanced osteogenic and osteoconductive materials developed through green chemistry. His research also explores modulation of plant secondary metabolites using green-synthesized nanomaterials, as well as environmentally friendly fabrication of metal oxide nanostructures for biological and agricultural use. Throughout his career, he has advanced the design of sustainable nanomaterials, self-assembly systems, and carbosiloxane-based dendritic hybrids with applications in drug delivery and controlled release. His contributions have strengthened interdisciplinary links between polymer science, biotechnology, and environmental nanotechnology. He has been frequently recognized for research excellence through awards at institutional and regional levels. Through his innovative approaches and consistent scientific productivity, Dr. Jafarirad continues to play a significant role in shaping the future of green nanotechnology, functional polymers, and bio-based nanomaterial engineering.

Profile: Google Scholar

Featured Publications

Jafarirad, S., Mehrabi, M., Divband, B., & Kosari-Nasab, M. (2016). Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Materials Science and Engineering: C, 59, 296–302.

Ebadollahi, R., Jafarirad, S., Kosari-Nasab, M., & Mahjouri, S. (2019). Effect of explant source, perlite nanoparticles and TiO₂/perlite nanocomposites on phytochemical composition of metabolites in callus cultures of Hypericum perforatum. Scientific Reports, 9(1), 12998.

Namazi, H., & Jafarirad, S. (2011). Application of hybrid organic/inorganic dendritic ABA type triblock copolymers as new nanocarriers in drug delivery systems. International Journal of Polymeric Materials, 60(9), 603–619.

Gharehpapagh, A. C., Farahpour, M. R., & Jafarirad, S. (2021). The biological synthesis of gold/perlite nanocomposite using Urtica dioica extract and its chitosan-capped derivative for healing wounds infected with methicillin-resistant bacteria. International Journal of Biological Macromolecules, 183, 447–456.

Daghian, S. G., Farahpour, M. R., & Jafarirad, S. (2021). Biological fabrication and electrostatic attractions of new layered silver/talc nanocomposite using Lawsonia inermis L. and its chitosan-capped inorganic/organic hybrid. Materials Science and Engineering: C, 128, 112294.