Prabir Pal – Materials Science – Best Researcher Award 

Dr. Prabir Pal - Materials Science - Best Researcher Award 

CSIR-Central Glass & Ceramic Research Institute - India

Author Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Dr. Prabir Pal began his academic journey with a strong focus on physics and materials science. He earned his Ph.D. from the Institute of Physics (IOP), Bhubaneswar, under the Homi Bhabha National Institute (HBNI) in 2008. His doctoral research, titled "Electron Spectroscopic Studies of Some Colossal Magnetoresistive Manganites," explored the synthesis, characterization, and electronic structure of oxide CMR materials using photoelectron spectroscopy. This foundation in materials science laid the groundwork for his illustrious career.

💼 Professional Endeavors

Following his Ph.D., Dr. Pal embarked on an international research journey. He undertook postdoctoral research at Universität Augsburg, Germany, focusing on thin-film growth, photoemission experiments, and laboratory development. He later joined Uppsala University, Sweden, where he contributed to pulsed laser deposition, chemical vapor deposition, RF magnetron sputtering, and molecular beam epitaxial (MBE) growth of oxide and semiconductor materials. His expertise in materials science and advanced techniques significantly influenced his career trajectory.

In 2011, Dr. Pal joined CSIR-National Physical Laboratory (NPL), New Delhi, India, as a Scientist, where he worked on III-nitride semiconductor materials and their applications in photodetectors under the TAP-SUN and D-NEED CSIR network projects. In 2019, he transitioned to CSIR-Central Glass & Ceramic Research Institute, Kolkata, India, as a Principal Scientist, focusing on layered structures and hybrid heterostructure devices integrating bulk semiconductors with 2D van der Waals materials for optoelectronic sensing applications.

🔬 Contributions and Research Focus

Dr. Pal's research spans a diverse array of topics in materials science, including 2D van der Waals materials, III-nitride semiconductors, ceramic oxides, oxide heterostructures, and energy materials. His innovative work in developing hybrid heterostructures and optoelectronic devices has opened new avenues for sensing applications. His expertise in high-resolution photoelectron spectroscopy and advanced material deposition techniques has advanced the understanding of the electronic structures of materials.

🌍 Impact and Influence

Dr. Pal’s research has significantly impacted the field of materials science, particularly in the development of advanced semiconductor devices. His work has been recognized globally, reflected in his H-index of 23 and over 1,500 citations across 82 peer-reviewed publications. His contributions have influenced both academic research and industrial applications, particularly in optoelectronics and energy materials.

🏆Academic Cites

Dr. Pal's academic contributions have been widely recognized, with a substantial number of citations underscoring the relevance and impact of his work. His publications have served as critical references for researchers in materials science, furthering studies on 2D materials, ceramic oxides, and heterostructure devices.

🌟 Legacy and Future Contributions

Dr. Prabir Pal's legacy is defined by his pioneering research in materials science and his commitment to advancing the frontiers of knowledge. His future contributions are poised to enhance the integration of 2D van der Waals materials with bulk semiconductors, driving innovations in energy materials and optoelectronics. By mentoring the next generation of scientists and fostering interdisciplinary collaborations, Dr. Pal is set to leave an enduring mark on the field.

📝Materials Science

Dr. Prabir Pal's groundbreaking research in materials science has advanced the development of 2D van der Waals materials, III-nitride semiconductors, and oxide heterostructures. His expertise in materials science continues to drive innovations in energy materials and hybrid heterostructures for optoelectronic applications. The future of materials science is brighter with his contributions to advanced material systems and cutting-edge technologies.

Notable Publication


📝Exploring the Molarity of Lithium Fluoride in Minimally Intensive Layer Delamination (MILD) Method for Efficient Room Temperature Synthesis of High-Quality Ti3C2Tx Free-Standing Film

Authors: Sarkar, P., Chatterjee, K., Pal, P., Das, K.

Journal: Materials Science in Semiconductor Processing

Year: 2025

Citations: 1


📝High-Sensitive and Fast-Responsive In2O3 Thin Film Sensors for Dual Detection of NO2 and H2S Gases at Room Temperature

Authors: Roopa, Kumar Pradhan, B., Kumar Mauraya, A., Pal, P., Kumar Muthusamy, S.

Journal: Applied Surface Science

Year: 2024

Citations: 3


📝Effect of Charge-Discharge with Higher Capacitance Performance of Ni-Substituted CoFe2O4 Magnetic Nanoparticles for Energy Storage

Authors: Kuldeep, Khan, M.A., Neha, Pal, P., Basheed, G.A.

Journal: Journal of Energy Storage

Year: 2024

Citations: 2


📝Charge Density Wave Transition and Unusual Resistance Hysteresis in Vanadium Disulfide (1T-VS2) Microflakes

Authors: Pal, S., Majhi, P., Sau, J., Ghosh, B., Raychaudhuri, A.K.

Journal: Physica Scripta

Year: 2024

Citations: 0


📝Field-Induced Magnetorheological Study Towards the Active Magneto-Viscoelastic Behavior of Stable MnFe2O4 Magnetic Nanofluid

Authors: Kuldeep, Khan, M.A., Chatterjee, K., Pal, P., Basheed, G.A.

Journal: Inorganic Chemistry Communications

Year: 2024

Citations: 0

Jingwei Tian – Materials Science and Technology – Research Excellence Achievement Award 

Dr. Jingwei Tian - Materials Science and Technology - Research Excellence Achievement Award 

Harbin institute of technology - China

Author Profile

Scopus

Google Scholar

🎓 Early Academic Pursuits

Dr. Jingwei Tian’s academic journey began at the prestigious Harbin Institute of Technology, where he pursued both his Master’s and Doctoral degrees in engineering mechanics and structural engineering. During this period, he developed a strong foundation in materials science and technology, specifically focusing on corrosion resistance and composite material applications. His doctoral research, guided by Prof. Guijun Xian, culminated in a dissertation titled “Preparation and Performance Study of Anti-Wear and Corrosion-Resistant Epoxy Resin Matrix Composites,” demonstrating his early commitment to advancing durable and resilient materials.

💼 Professional Endeavors

Upon completing his doctoral studies, Dr. Tian began his career as a Lecturer and Postdoctoral Researcher at the School of Civil Engineering, Harbin Institute of Technology, under the mentorship of Prof. Huigang Xiao. His professional focus on materials science and technology has led him to participate in numerous high-profile projects. Notably, he is a key participant in projects funded by the National Natural Science Foundation of China and the National Key Research and Development Program, which address critical issues in carbon fiber-reinforced polymer (CFRP) composites and thermoplastic composite materials for marine environments.

🔬 Contributions and Research Focus

Dr. Tian's contributions to materials science and technology are particularly evident in his extensive research on carbon fiber composites, epoxy resin matrix composites, and thermoplastic composite tendons. His work spans various applications, including the development of national standards for evaluating hygrothermal resistance in carbon fiber-reinforced composites. Leading the project on self-healing mechanisms of carbon fiber composites, he is pioneering functional design approaches that enhance material durability and sustainability. This project, supported by the State Key Laboratory of Polymer Materials Engineering, signifies his role in advancing the field.

🌍 Impact and Influence

Dr. Tian’s influence extends beyond research through his roles in organizing numerous national and international conferences, such as the National FRP Application Technology Exchange Meeting and the SAMPE China 2024 International Conference. His organizational roles have helped bridge academic research with industry needs in fiber composites and civil engineering applications. Furthermore, his involvement as a Youth Editorial Board Member for the International Journal of Mechanical Engineering and an expert reviewer for several SCI journals reflects his respected standing in the materials science and technology community.

🏆Academic Cites

Dr. Tian’s research contributions have been widely cited in academic literature, demonstrating the relevance and impact of his findings. His publications on corrosion-resistant coatings and carbon fiber composites have informed advancements in composite material applications, particularly within civil engineering infrastructure. These citations underscore the practical significance of his work in addressing real-world material challenges.

🌟 Legacy and Future Contributions

Looking forward, Dr. Tian aims to leave a lasting legacy through continued contributions to materials science and technology. His research on self-healing carbon fiber composites and degradable epoxy resin-based CFRP materials promises to advance sustainable practices in materials engineering. As he progresses in his academic career, Dr. Tian is poised to shape future developments in civil engineering materials, promoting resilience and longevity in infrastructure applications. His commitment to innovation and excellence will undoubtedly leave an enduring impact on both the academic and engineering communities.

📝Notable Publication


Article Title: Design, Preparation, and Mechanical Properties of Glass Fiber Reinforced Thermoplastic Self-Anchor Plate Cable Exposed in Alkaline Solution Environment

Authors: Zhang, Z., Ji, Q., Guo, Z., He, T., Xian, G.

Journal: Polymer Composites

Year: 2024

Citations: 4


Article Title: Effect of Hygrothermal Aging on the Friction Behavior and Wear Mechanism of Multi-Filler Reinforced Epoxy Composites for Coated Steel

Authors: Tian, J., Qi, X., Xian, G.

Journal: Journal of Materials Research and Technology

Year: 2024

Citations: 0


Article Title: Mechanical Properties Evaluation of Glass Fiber Reinforced Thermoplastic Composite Plate Under Combined Bending Loading and Water Immersion

Authors: Xian, G., Zhou, P., Li, C., Zhang, Z., He, T.

Journal: Construction and Building Materials

Year: 2024

Citations: 3


Article Title: Long-Term Properties Evolution and Life Prediction of Glass Fiber Reinforced Thermoplastic Bending Bars Exposed in Concrete Alkaline Environment

Authors: Xian, G., Bai, Y., Zhou, P., He, T., Zhang, Z.

Journal: Journal of Building Engineering

Year: 2024

Citations: 9


Article Title: Water Absorption and Property Evolution of Epoxy Resin Under Hygrothermal Environment

Authors: Xian, G., Niu, Y., Qi, X., Yue, Q., Guo, R.

Journal: Journal of Materials Research and Technology

Year: 2024

Citations: 0


Article Title: Design of Novel Glass Fiber Reinforced Polypropylene Cable-Anchor Component and Its Long-Term Properties Exposed in Alkaline Solution

Authors: Xin, M., Zhang, Y., Guo, Z., Zhang, Z., Xian, G.

Journal: Case Studies in Construction Materials

Year: 2024

Citations: 0

Yogendra Yadawa | Materials Science and Engineering | Best Researcher Award

Mr. Yogendra Yadawa | Materials Science and Engineering | Best Researcher Award 

Rajiv Gandhi Institute of Petroleum Technology, Jais Amethi | India

AUTHOR PROFILE

EARLY ACADEMIC PURSUITS

Yogendra Yadawa embarked on his academic journey with a Bachelor's degree in Mechanical Engineering from the Ideal Institute of Technology, Ghaziabad, completing it in 2014 with a score of 72.56%. His early academic excellence continued with a Master's degree in Fluid Engineering from Motilal Nehru National Institute of Technology (MNNIT), Allahabad, from 2016 to 2018, achieving a CGPA of 8.0. Currently, he is pursuing a Ph.D. in Materials Science and Engineering at Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Amethi, under the supervision of Prof. Amit Ranjan, with a CGPA of 8.4. His Ph.D. thesis focuses on "Novel Oxide Materials Prepared by Bulk and Polymer Assisted Sol-Gel Method for Environmental Pollutant Remediation through Adsorptive and Visible Light Induced Photocatalytic Route."

PROFESSIONAL ENDEAVORS

Yogendra has gained significant professional experience through various teaching assistant roles at RGIPT. He has assisted in courses such as Heat and Mass Transfer, Fluid Mechanics, Fluid Flow Operations and Unit Operations Lab, Chemical Reaction Engineering Lab, Materials Science and Engineering, Transport Phenomena and Engineering Thermodynamics, and Industrial Pollution Control Lab. These roles have provided him with a robust foundation in Materials Science and Engineering, enabling him to impart knowledge effectively and engage in meaningful research.

CONTRIBUTIONS AND RESEARCH FOCUS

Yogendra's research primarily revolves around Materials Science and Engineering, with specific interests in Materials Processing, Oxide Semiconductor Nanoparticles, Composite Materials, Electrospinning, Soft Matter, and Waste Water Treatment through Adsorption and Photocatalysis. His notable presentations at international and national conferences include the International Online Conference on Materials Science and Technology (ICMT 2021), 2022 MRS Spring Meeting & Exhibit, Chemcon-2022 Conference, and the E-MRS Spring Meeting 2023. His research contributions have focused on the synthesis and characterization of novel materials for environmental applications, such as zinc titanate particles and V2O3/ZnTiO3 nanocomposites for photocatalysis and adsorption.

CITATIONS

  • Citations 35
  • h-index 3
  • i10-index 2

IMPACT AND INFLUENCE

Yogendra's work in Materials Science and Engineering has had a significant impact on environmental pollutant remediation techniques. His research on novel oxide materials and their applications in adsorptive and visible light-induced photocatalytic processes addresses critical environmental challenges. His achievements include receiving a cash prize for publishing a high-impact paper in the Journal of Environmental Chemical Engineering and securing a SERB fund for attending the international symposium E-MRS Spring Meeting 2023 in Strasbourg, France. These accolades underscore his influence and commitment to advancing the field of Materials Science and Engineering.

ACADEMIC CITES

Yogendra's scholarly work is well-recognized within the academic community. He has presented his research at various prestigious conferences, showcasing his innovative findings in Materials Science and Engineering. His participation in workshops and courses, such as those organized by RGIPT, SVNIT Surat, and MNNIT Allahabad, has further solidified his expertise and contributed to his academic growth. His role as a student DPGC member and involvement in extracurricular activities like the Gyanarpan Project Amethi highlights his dedication to both academic and community development.

LEGACY AND FUTURE CONTRIBUTIONS

Yogendra Yadawa's legacy in Materials Science and Engineering is marked by his innovative research and significant contributions to environmental remediation. His future contributions are anticipated to further enhance the understanding and application of advanced materials for sustainable solutions. His ongoing research and professional endeavors at RGIPT and beyond will continue to influence the field, driving advancements in materials processing, nanoparticle synthesis, and environmental engineering.

MATERIALS SCIENCE AND ENGINEERING

Yogendra's expertise in Materials Science and Engineering is evident through his extensive research on oxide semiconductor nanoparticles, composite materials, and wastewater treatment methods. His academic pursuits and professional endeavors underscore his commitment to developing innovative materials for environmental applications. His contributions to conferences, workshops, and academic projects demonstrate his role as a key figure in advancing Materials Science and Engineering.

NOTABLE PUBLICATION