Fadoua El hajjaji – Materials – Women Researcher Award 

Prof. Fadoua El Hajjaji began her academic journey with a strong foundation in chemistry, completing her Bachelor's degree in Chemistry Sciences from the Faculty of Sciences at USMBA Fez, Morocco, in 2009. Her academic curiosity led her to further her studies, obtaining a Master’s degree in Materials Engineering, specializing in material characterization, quality control, and surface treatment from Ibn Tofail University in Kenitra in 2011. Prof. El Hajjaji's dedication to advancing knowledge in materials science continued with her PhD in Habilitation in Electrochemistry, awarded in July 2022 from the Faculty of Sciences at Ibn Abdallah University, Fez, Morocco, where she focused on the contribution of heterocyclic ionic liquids in corrosion inhibition.

💼 Professional Endeavors

Prof. Fadoua El Hajjaji's professional career is marked by a strong focus on materials science, particularly in the areas of surface treatment, corrosion inhibition, and material characterization. She has been actively involved in both teaching and research, contributing to the scientific community's understanding of materials and their behavior under various conditions. Prof. El Hajjaji has led multiple projects exploring corrosion inhibition, particularly the use of natural compounds such as thyme and cloves essential oils, as well as pyrazole and quinoxaline derivatives. Her expertise extends to quantum approaches to studying the inhibition mechanisms of these compounds.

🔬 Contributions and Research Focus

Prof. El Hajjaji's research contributions are extensive, focusing on several crucial aspects of materials science. Her work is centered around corrosion inhibition, particularly on mild steel in HCl media, where she explored natural substances and organic compounds like pyrazole and quinoxaline for their effectiveness in corrosion protection. Additionally, her research on heterocyclic ionic liquids in corrosion inhibition has provided valuable insights into electrochemical methods for material protection. Her theoretical work on quantum approaches, specifically for the pyrazole series, has added depth to the understanding of molecular interactions in materials science. Prof. El Hajjaji’s research is organized around four primary axes: surface treatment and quality control, corrosion inhibition, dynamic stimulation methods for finding molecules with high inhibitory efficiency, and the study of material surface composition using different surface techniques.

🌍 Impact and Influence

Prof. El Hajjaji's impact in the field of materials science and electrochemistry is significant. Her contributions have enriched the understanding of corrosion processes and the use of natural compounds for corrosion inhibition, which are critical for improving material longevity and performance. Her research has influenced both academic and industrial approaches to material treatment and quality control. Prof. El Hajjaji’s interdisciplinary work, combining theoretical calculations and experimental studies, has set a new standard for how materials can be studied and protected in various environments.

🏆Academic Cites

Prof. El Hajjaji’s work has been widely cited in academic literature, particularly for her research in corrosion inhibition and the use of quantum approaches in materials science. Her publications have served as a reference for scholars and researchers working in similar fields, and her contributions continue to inform future studies and applications in material protection. The high citation count of her work highlights its relevance and importance in advancing the understanding of materials behavior, especially in terms of corrosion and surface treatments.

🌟 Legacy and Future Contributions

As Prof. El Hajjaji continues her career, her legacy in the field of materials science, particularly in corrosion inhibition and surface treatment, is becoming firmly established. Her future contributions are expected to expand the applications of natural compounds and quantum approaches in materials science. Prof. El Hajjaji's continued research will likely lead to further advancements in corrosion inhibition techniques, providing more sustainable and effective solutions for material preservation. Moreover, her work in surface treatment and quality control will undoubtedly have lasting effects on both the academic community and industrial practices.

📝Materials

Prof. Fadoua El Hajjaji's research in materials science, particularly corrosion inhibition, has been instrumental in advancing the understanding of material behavior. Her studies on the use of natural compounds and materials such as thyme and cloves essential oils for corrosion protection have significantly impacted the field. Additionally, her innovative work on heterocyclic ionic liquids and quantum approaches in materials science has enhanced the understanding of material interactions, offering new insights for future research and industrial applications.

Notable Publication


📝Theoretical Prediction of Corrosion Inhibition by Ionic Liquid Derivatives: A DFT and Molecular Dynamics Approach

Authors: E. Walid Elfalleh, B. Hammouti, B. El Ibrahimi, F. Elhajjaji, ...

Journal: RSC Advances, 2025

Citations: 0

Impact: Focuses on theoretical corrosion inhibition through ionic liquid derivatives using DFT and molecular dynamics simulations.


📝Towards Understanding the Corrosion Inhibition Mechanism of Green Imidazolium-Based Ionic Liquids for Mild Steel Protection in Acidic Environments

Authors: E. Ech-chihbi, F. Elhajjaji, A. Titi, ...

Journal: Indonesian Journal of Science and Technology, 2024

Citations: 4

Impact: Provides insights into green imidazolium ionic liquids for corrosion protection of mild steel in acidic conditions.


📝Insights of Corrosion Inhibitor Based in Pyridinium Ionic Liquids

Authors: F. Elhajjaji, R. Salim, M. Messali, ...

Journal: Arabian Journal for Science and Engineering, 2023

Citations: 10

Impact: Investigates the potential of pyridinium-based ionic liquids as effective corrosion inhibitors.


📝A Detailed Electronic-scale DFT Modeling/MD Simulation, Electrochemical and Surface Morphological Explorations of Imidazolium-Based Ionic Liquids as Sustainable and Non-toxic Corrosion Inhibitors for Mild Steel in 1 M HCl

Authors: F. Elhajjaji, E. Ech-chihbi, R. Salim, ...

Journal: Materials Science and Engineering B, 2023

Citations: 52

Impact: Comprehensive study combining theoretical, electrochemical, and surface analysis of imidazolium ionic liquids in corrosion inhibition.


📝An Effective and Smart Corrosion Inhibitor in Acidic Environment: Experimental & Theoretical Studies

Authors: A. Bouoidina, R. Haldhar, R. Salim, ...

Journal: Korean Journal of Chemical Engineering, 2023

Citations: 7

Impact: Presents a smart corrosion inhibitor for acidic environments, supported by experimental and theoretical approaches.


📝Novel Thiophene Derivatives as Eco-Friendly Corrosion Inhibitors for Mild Steel in 1 M HCl Solution: Characterization, Electrochemical, and Computational (DFT and MC Simulations) Methods

Authors: Y. Fernine, N. Arrousse, R. Haldhar, ...

Journal: Journal of Environmental Chemical Engineering, 2022

Citations: 27

Ram Katiyar – Materials Science – Best Researcher Award 

Prof. Ram Katiyar - Materials Science - Best Researcher Award 

University of Puerto Rico - United States 

Author Profile

Scopus

Google Scholar

Orcid

🎓 Early Academic Pursuits

Professor Ram Katiyar began his academic journey in India, where he earned a Bachelor of Science (BS) degree in Physics, Chemistry, and Mathematics from Agra University in 1962. He followed this with a Master of Science (MS) degree in Physics in 1964 from the same university. Driven by his passion for physics, he pursued a Ph.D. at the prestigious Indian Institute of Science in Bangalore, completing it in 1968 with a focus on materials science, setting the foundation for his distinguished career.

💼 Professional Endeavors

Prof. Katiyar’s extensive professional career spans multiple continents, beginning as a post-doctoral fellow at the University of Edinburgh from 1968 to 1971. He held academic positions across prestigious institutions, including Assistant Professor at the University of Southern California (1971-73) and Associate Professor at the University of Campinas, Brazil (1973-80), where he later became a full professor. Since 1985, he has served as a Professor at the University of Puerto Rico in San Juan. His international collaborations include visiting professorships at renowned institutions such as the Max Plank Institute, Bell Labs, and the University of California, Irvine. His engagements also include significant collaborations with the National Research Council of Canada and Bell Labs in Murray Hill, further enhancing his research in materials science.

🔬 Contributions and Research Focus

Prof. Katiyar's research is firmly rooted in materials science, particularly in the area of ferroelectric and multiferroic materials. His work has been pivotal in advancing the understanding of these materials' properties, applications in electronic devices, and energy storage technologies. Over the years, he has contributed substantially to the fields of ferroelectrics, dielectrics, and photovoltaics. His active involvement in organizing key conferences such as the International Symposium on Integrated Functionalities and chairing sessions on multiferroics at major scientific meetings underscores his leadership in the scientific community.

🌍 Impact and Influence

Prof. Katiyar's impact on the scientific community is vast, with his contributions resonating through both academia and industry. As a Fellow of prominent societies like the American Physical Society (APS), Materials Research Society (MRS), Electrochemical Society (ECS), and the American Ceramic Society (ACerS), he has significantly influenced the direction of research in materials science. His mentorship has shaped the careers of numerous scientists, with 15 MS and 40 Ph.D. students completing their degrees under his supervision. His active involvement in international conferences as an invited speaker and keynote presenter further solidifies his position as a thought leader.

🏆Academic Cites

Prof. Katiyar’s scholarly work is widely cited in the field of materials science, underscoring the relevance and applicability of his research. His published papers in leading journals have been extensively referenced by researchers in ferroelectric materials, nanotechnology, and energy storage solutions. His ability to bridge theoretical understanding with practical applications has made his research indispensable to advancements in material functionalities.

🌟 Legacy and Future Contributions

Looking ahead, Prof. Ram Katiyar continues to make significant strides in materials science, particularly in the field of advanced functional materials. His work on the synthesis and characterization of ferroelectrics, multiferroics, and energy-efficient materials is likely to have long-lasting implications for sustainable technologies. His upcoming participation in global conferences, such as the Pan American Ceramics Congress and International Meeting on Ferroelectricity, reflects his ongoing commitment to shaping the future of the field. His legacy is defined by his contributions to scientific knowledge, his mentorship of the next generation of scientists, and his lasting influence on the global materials science community.

📝Notable Publication


📝Comparative Investigation of Water-Based CMC and LA133 Binders for CuO Anodes in High-Performance Lithium-Ion Batteries

Authors: N. Oli, S. Choudhary, B.R. Weiner, G. Morell, R.S. Katiyar

Journal: Molecules

Year: 2024

Citations: 0


📝Development of Fluoride-Ion Primary Batteries: The Electrochemical Defluorination of CFx

Authors: L.E. Robinson, J. Wang, H. Asare, S.C. Jones, W.C. West

Journal: Journal of Physical Chemistry C

Year: 2024

Citations: 0


📝Enhanced Rate Capability in Lithium-Sulfur Batteries Using Hybrid Carbon Nanotubes and NZFO-Coated Separator

Authors: S. Shweta, M.K. Bhattarai, S. Kumar, G. Morell, R.S. Katiyar

Journal: Journal of Electroanalytical Chemistry

Year: 2024

Citations: 1


📝Impact of Post Deposition Treatment on Optoelectrical and Microstructural Properties of Tin Sulfide Thin Film for Photovoltaic Applications

Authors: Nisha, P. Sarkar, P. Kumar, R.S. Katiyar

Journal: Physica Scripta

Year: 2024

Citations: 0


📝Effective Polysulfide Control in Lithium-Sulfur Batteries Utilizing BiFeO3 Nanoparticles

Authors: M.K. Bhattarai, B. Tripathi, S. Shweta, R.S. Katiyar, G. Morell

Journal: APL Materials

Year: 2024

Citations: 1


📝Exploring Lead Zirconate Titanate, the Potential Advancement as an Anode for Li-Ion Batteries

Authors: M.K. Bhattarai, S. Shweta, S. Choudhary, R.S. Katiyar, G. Morell

Journal: ACS Omega

Year: 2024

Citations: 3