Giovanni Ciccotti – Condensed Matter Physics – Best Researcher Award 

Prof. Giovanni Ciccotti - Condensed Matter Physics - Best Researcher Award 

University Rome Sapienza - Italy

Author Profile

Scopus

Google Scholar

🎓 Early Academic Pursuits

Prof. Giovanni Ciccotti's academic journey began with a strong foundation in condensed matter physics, culminating in a Laurea in Physics cum laude from the University of Roma “La Sapienza” in 1967. His early research was rooted in theoretical physics, particularly within the High Energy Theoretical Group at Rome 1 Physics Department, where he held a CNR Fellowship from 1968 to 1971. These formative years established his expertise in computational physics and statistical mechanics, paving the way for his later groundbreaking contributions to condensed matter physics.

💼 Professional Endeavors

Throughout his distinguished career, Prof. Ciccotti held various prestigious academic and research positions across the globe. He served as a Professore Ordinario of Structure of Matter at the University of Roma "La Sapienza" from 1990 to 2014 and played a pivotal role in molecular physics research. His tenure at institutions such as University College Dublin, Université de Paris VI, and MIT reinforced his reputation as a global leader in condensed matter physics. Additionally, his involvement with the Centre Européen de Calcul Atomique et Moléculaire (CECAM) and CNRS in France demonstrated his commitment to advancing computational methodologies in physics.

🔬 Contributions and Research Focus

Prof. Ciccotti’s research has significantly influenced condensed matter physics, with key contributions in molecular dynamics simulations, statistical mechanics, and atomistic simulations. His pioneering work in computational physics has led to advancements in the understanding of the structure of matter, phase transitions, and complex molecular systems. His collaborations with international institutions and his role as a recipient of the Berni J. Alder CECAM Prize highlight his contributions to numerical methods in molecular simulations. His courses in Atomistic Simulations and Advanced Simulations have been instrumental in training new generations of physicists.

🌍 Impact and Influence

The impact of Prof. Ciccotti’s work is evident in his widespread recognition and numerous honors, including being named a Fellow of the European Physical Society and the Institute of Physics. His Schlumberger Lecture at the University of Cambridge and his position as a Visiting Fellow at Corpus Christi College underscore his influence in the scientific community. His leadership in the creation of a computerized library catalogue for the University of Roma further demonstrates his dedication to academic development.

🏆Academic Cites

Prof. Ciccotti's extensive body of work has been widely cited in scientific literature, solidifying his status as a thought leader in condensed matter physics. His publications have been referenced extensively in studies related to molecular simulations, computational physics, and statistical mechanics. His role as a guest scientist and visiting professor across multiple institutions has further amplified the reach and impact of his research.

🌟 Legacy and Future Contributions

As an Emeritus Professor at "La Sapienza" and UCD, Prof. Ciccotti's legacy is firmly established in the field of condensed matter physics. His groundbreaking research in molecular simulations and statistical mechanics continues to inspire new research directions. His contributions to advanced computational techniques ensure that future generations of physicists will build upon his pioneering work. His involvement in academic institutions worldwide guarantees that his influence in theoretical and computational physics will persist for years to come.

📝Notable Publication


📝A NEMD approach to the melt-front evolution under gravity

Authors: M. Ferrario, Mauro; G. Ciccotti, Giovanni; D. Mansutti, D.; A. DiCarlo, Antonio

Journal: Journal of Chemical Physics

Year: 2025

Citations: 0


📝Nucleation of multi-species crystals: methane clathrate hydrates, a playground for classical force models

Authors: M. Lauricella, Marco; G. Ciccotti, Giovanni; S. Meloni, Simone

Journal: Molecular Physics

Year: 2024

Citations: 0


📝A correct, reversible Trotter splitting for the evolution operator in molecular dynamics simulations of molecular systems with constraints

Authors: C.D. de Michele, Cristiano D.; G. Ciccotti, Giovanni

Journal: Molecular Physics

Year: 2024

Citations: 0


📝Effect of coarse graining in water models for the study of kinetics and mechanisms of clathrate hydrates nucleation and growth

Authors: M. Lauricella, Marco; S. Meloni, Simone; G. Ciccotti, Giovanni

Journal: Journal of Chemical Physics

Year: 2023

Citations: 4


📝Regularized Bennett and Zwanzig free energy estimators

Authors: S. Decherchi, Sergio; G. Ciccotti, Giovanni; A. Cavalli, Andrea

Journal: Journal of Chemical Physics

Year: 2023

Citations: 1


📝Continuum mechanics from molecular dynamics via adiabatic time and length scale separation

Authors: A. DiCarlo, Antonio; S. Bonella, Sara; M. Ferrario, Mauro; G. Ciccotti, Giovanni

Journal: Letters in Mathematical Physics

Year: 2023

Citations: 3

Michael Giersig – Nanotechnology – Best Researcher Award

Prof. Dr. Michael Giersig - Nanotechnology - Best Researcher Award 

IPPT PAN - Poland

Author Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Prof. Dr. Michael Giersig’s academic journey began with a strong foundation in physics and chemistry. He earned his Master’s Degree (Dipl. Phys.) from the Department of Physics at Freie University Berlin in 1984, followed by a Ph.D. (Dr. rer. nat.) in Chemistry from the same university in 1988. His early research focused on the synthesis and characterization of nanostructures, laying the groundwork for his future contributions to NANOTECHNOLOGY. In 1999, he obtained his Dr. rer. nat. habil. (Venia Legendi) from the University of Potsdam, marking his transition into a leadership role in academia and research.

💼 Professional Endeavors

Prof. Dr. Michael Giersig has held prestigious academic and research positions across various institutions. Since 2019, he has been a Full Professor at the Institute of Fundamental Technological Research, Polish Academy of Sciences in Warsaw. Prior to this, he served as a Professor at Freie University Berlin from 2009 to 2018, where he significantly contributed to the fields of physics and NANOTECHNOLOGY. His earlier roles include professorships at Rheinische Friedrich-Wilhelms-University, the Helmholtz-Center Berlin, and the University of Melbourne. His career has been marked by numerous visiting professorships across Europe and China, reflecting his global influence in scientific research.

🔬 Contributions and Research Focus

Prof. Giersig’s research has been at the forefront of NANOTECHNOLOGY, focusing on the synthesis and production of metallic, magnetic, and semiconductor nanoparticles. His work has led to groundbreaking advancements in nanostructures for life sciences, electronics, and renewable energy applications. His expertise extends to the creation of carbon-based nanostructures like MWCNT and graphene, which have revolutionized applications in solar cells, photonics, and medical diagnostics. His contributions also include advanced characterization techniques such as HRTEM, SEM, AFM, Raman Spectroscopy, and SQUID, which have enhanced the understanding of nanoscale materials.

🌍 Impact and Influence

Prof. Dr. Michael Giersig’s contributions to NANOTECHNOLOGY have had a profound impact on both fundamental science and applied research. His work on nanoparticles and nanostructures has paved the way for advances in tissue engineering, diagnostics, memory devices, and solar cell technology. He has played a crucial role in bridging international research collaborations, particularly between Germany and Poland, earning multiple awards for his efforts. His mentorship has produced outstanding scholars who continue to push the boundaries of NANOTECHNOLOGY.

🏆Academic Cites

Prof. Giersig’s extensive body of work has been widely cited in leading scientific journals, reflecting his influence in the field. His research on nanoparticle technology and interface reactions has been referenced by scholars globally, making a significant impact on future developments in NANOTECHNOLOGY. His collaborations with researchers from Poland, Germany, Spain, China, and beyond have further amplified his academic reach.

🌟 Legacy and Future Contributions

Prof. Dr. Michael Giersig’s legacy lies in his transformative contributions to NANOTECHNOLOGY and his commitment to fostering global scientific collaboration. His future research aims to push the boundaries of nanomaterials for medical, environmental, and energy applications. Through continued mentorship and international partnerships, he is set to influence the next generation of scientists and researchers in this ever-evolving field. His pioneering work ensures that NANOTECHNOLOGY remains at the forefront of scientific advancement for years to come.

📝Notable Publication


📝Advanced Functional NiCo₂S₄@CoMo₂S₄ Heterojunction Couple as Electrode for Hydrogen Production via Energy-Saving Urea Oxidation

Authors: Njemuwa Njoku Nwaji, Boka Fikadu, Magdalena Osial, Jaebeom Lee, Michael Giersig

Journal: Small

Year: 2025

Citations: 0


📝Enhancing Epoxy Composites with Graphene and Graphene Oxide: Thermal and Mechanical Insights

Authors: Sławomir Wilczewski, Zdzisław Nowak, Michał S. Maj, Roman A. Minikayev, Michael Giersig

Journal: ChemNanoMat

Year: 2025

Citations: 0


📝Atomically Dispersed Ruthenium in Transition Metal Double Layered Hydroxide as a Bifunctional Catalyst for Overall Water Splitting

Authors: Njemuwa Njoku Nwaji, Boka Fikadu, Magdalena Osial, Jaebeom Lee, Michael Giersig

Journal: Renewable Energy

Year: 2024

Citations: 2


📝How Scanning Probe Microscopy Can Be Supported by Artificial Intelligence and Quantum Computing?

Authors: Agnieszka Pregowska, Agata Roszkiewicz, Magdalena Osial, Michael Giersig

Journal: Microscopy Research and Technique

Year: 2024

Citations: 0


📝Disentangling the Catalytic Origin in Defect Engineered 2D NiCoMoS@Ni(CN)₂ Core-Shell Heterostructure for Energy-Saving Hydrazine-Assisted Water Oxidation

Authors: Njemuwa Njoku Nwaji, Boka Fikadu, Magdalena Osial, Jaebeom Lee, Michael Giersig

Journal: International Journal of Hydrogen Energy

Year: 2024

Citations: 2


📝A Stable Perovskite Sensitized Photonic Crystal P−N Junction with Enhanced Photoelectrochemical Hydrogen Production

Authors: Njemuwa Njoku Nwaji, Hyojin Kang, Birhanu Bayissa Gicha, Jaebeom Lee, Michael Giersig

Journal: ChemSusChem

Year: 2024

Citations: 1