Dr. Geetha D. V. | Crystallography | Best Researcher Award

Dr. Geetha D. V. | Crystallography | Best Researcher Award

Dr. Geetha D. V. | University of Mysore | India

Dr. Geetha D. V.’s research primarily focuses on the structural analysis and characterization of biologically and medicinally relevant compounds. She extensively utilizes X-ray crystallography and powder diffraction techniques to elucidate the three-dimensional structures of heterocyclic compounds, chalcones, indole derivatives, and hydrazones, providing detailed insights into their molecular packing and intermolecular interactions. Her work integrates quantum chemical computations, particularly Density Functional Theory (DFT), to investigate electronic properties, spectroscopic behavior, and reactivity patterns of novel molecules. She applies molecular docking and molecular dynamics simulations to study ligand–protein interactions, with special attention to antiviral targets like SARS-CoV-2 proteins, highlighting critical residues and interaction mechanisms. Additionally, Dr. Geetha explores Hirshfeld surface analysis to visualize and quantify intermolecular contacts and non-covalent interactions. Her research extends to the design and synthesis of novel heterocyclic molecules, combining experimental and computational approaches for structure–activity correlation. She has contributed to understanding drug-like properties, binding affinities, and stability profiles of therapeutic candidates. Her studies also involve electrostatic potential mapping, frontier molecular orbital analysis, and hydrogen-bonding evaluation, providing predictive insights for biological activity. The integration of crystallography, computational chemistry, and in-silico studies allows her to develop a comprehensive understanding of molecular behavior in both solid-state and biological environments. Her work consistently emphasizes innovation, molecular-level insight, and application to pharmacologically relevant systems, bridging experimental and theoretical chemistry. Dr. Geetha’s research contributes to rational drug design, molecular recognition studies, and advanced material analysis, reflecting a strong interdisciplinary approach in physical, computational, and medicinal chemistry.

Profile: Scopus 

Featured Publications

Karthik, V., Santhosh, C., Geetha, D. V., Chandini, K. M., Sindogi, K., Sridhar, M. A., & Sadashiva, M. P. (2026). Multifaceted exploration of benzyl 5-(p-tolyl)-1,3,4-thiadiazole-2-carboxylate: Spectroscopic, structural, and computational insights into its drug-like potential. Journal of Molecular Structure, 1350, 143963.

Geetha, D. V., Harisha, A. S., Karthik, V., Chanadana, S. N., Kavitha, H. D., Lakshminarayana, B. N., & Sridhar, M. A. (2026). X-ray structural analysis, quantum chemical computations, molecular docking, and molecular dynamics simulations of diethyl 5’-amino-3,3-dibromo-2,6-dicyano-1,2,3,4-tetrahydro-[1,1.3,1-terphenyl] 2,4-dicarboxylate. Journal of Molecular Structure, 1351, 144142.

Lakshminarayana, B. N., Sreenatha, N. R., Sharath, C. L., Geetha, D. V., Shivakumar, N., & Balakrishna, K. (2025). Synthesis and comparative investigations of DFT/B3LYP, B3PW91, CAM-B3LYP and HSEH1PBE methods applied to molecular structure, spectroscopic analysis, electronic properties of a novel hydrazone having triazole and pyrazole moiety. Results in Chemistry.

Al-Ostoot, F. H., Akhileshwari, P., Kameshwar, V. H., Geetha, D. V., Aljohani, M. S., Alharbi, H. Y., Khanum, S. A., & Sridhar, M. A. (2024). Structural and theoretical exploration of a multi-methoxy chalcone: Synthesis, quantum theory, electrostatics, molecular packing, DFT analysis, and in-silico anti-cancer evaluation. Heliyon, e33814.

Geetha, D. V., Sharath, C. L., Shivakumar, N., Lakshminarayana, B. N., Chandini, K. M., & Balakrishna, K. (n.d.). Novel series of hydrazones carrying pyrazole and triazole moiety: Synthesis, structural elucidation, quantum computational studies and antiviral activity against SARS-Cov-2.

Dr. Adewumi Oluwole | Particle Physics | Best Researcher Award 

Dr. Adewumi Oluwole | Particle Physics | Best Researcher Award 

Dr. Adewumi Oluwole | University of Pretoria | South Africa

Dr. Adewumi Olufemi Oluwole is a passionate research chemist specializing in the design, synthesis, and characterization of advanced nanocomposite materials for environmental remediation and energy storage applications. His work focuses on the degradation of pharmaceutical pollutants, agrochemicals, and industrial and domestic wastes using innovative photocatalytic and nanomaterial-based approaches. He has extensive expertise in graphitic carbon nitride, heterostructured nanocomposites, and ternary heterojunctions. Adewumi applies techniques such as XRD, FTIR, SEM-EDS, HRTEM, UV-Vis, PL, EIS, and BET to investigate material properties and performance. His research interests also include biosensor development, drug delivery systems, and renewable energy storage technologies. He has successfully synthesized novel nanomaterials with enhanced photocatalytic efficiency and energy storage capabilities. Adewumi has authored multiple high-impact publications in journals such as RSC Advances, Journal of Environmental Chemical Engineering, and Journal of Water Process Engineering. He is skilled in supervising and mentoring undergraduate and postgraduate students and managing complex research projects. Adewumi is experienced in presenting research findings at local and international conferences, demonstrating strong communication expertise. His work contributes significantly to sustainable environmental solutions and advanced material science. He is recognized for his innovative approaches in photocatalysis and pollutant degradation studies. Adewumi combines technical proficiency with effective project management and collaboration skills. His research continues to explore multifunctional nanocomposites for practical environmental and energy applications. Adewumi’s dedication to scientific innovation and academic excellence has positioned him as a leading researcher in environmental nanomaterials. His contributions have a notable impact on both fundamental research and applied chemical engineering solutions.

Profile: Google Scholar

Featured Publications

Oluwole, A. O., Omotola, E. O., & Olatunji, O. S. (2020). Pharmaceuticals and personal care products in water and wastewater: A review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation. BMC Chemistry, 14(1), 62.

Oluwole, A. O., & Olatunji, O. S. (2022). Photocatalytic degradation of tetracycline in aqueous systems under visible light irradiation using needle-like SnO₂ nanoparticles anchored on exfoliated g-C₃N₄. Environmental Sciences Europe, 34(1), 5.

Omotola, E. O., Oluwole, A. O., Oladoye, P. O., & Olatunji, O. S. (2022). Occurrence, detection and ecotoxicity studies of selected pharmaceuticals in aqueous ecosystems: A systematic appraisal. Environmental Toxicology and Pharmacology, 91, 103831.

Olufemi Oluwole, A., Khoza, P., & Olatunji, O. S. (2022). Synthesis and characterization of g-C₃N₄ doped with activated carbon (AC) prepared from grape leaf litters for the photocatalytic degradation of enrofloxacin. ChemistrySelect, 7(45), e202203601.

Oluwole, A. O., & Olatunji, O. S. (2023). Synthesis and characterization of binary bismuth tungstate-graphitic carbon nitride (BWO/g-C₃N₄) heterojunction nanocomposites for efficient photodegradation of ibuprofen in aqueous media. Journal of Water Process Engineering, 54,

 

Assist. Prof. Dr. Iftikhar Ahmed | Photothermal | Best Researcher Award 

Assist. Prof. Dr. Iftikhar Ahmed | Photothermal | Best Researcher Award 

Assist. Prof. Dr. Iftikhar Ahmed | ADU University | United Arab Emirates

Dr. Iftikhar Ahmed, D.Sc., Ph.D., MRSC (UK), is a renowned scientist and academic in Environmental and Public Health at Abu Dhabi University, recognized for his multidisciplinary expertise in nanochemistry, renewable energy, and environmental health sciences. His research integrates nanobiotechnology, artificial intelligence, and sustainable water-energy systems, focusing on photocatalytic water purification, solar desalination, and biomedical nanomaterials. With over 60 peer-reviewed publications in leading journals such as Nature, ACS, RSC, Elsevier, and Wiley, his work has garnered more than 5,000 citations and an H-index of 22, reflecting global impact and scientific excellence. He has contributed to the advancement of energy-efficient materials, solar-driven evaporation systems, thermoelectric nanogenerators, and carbon-based heterostructures for clean water and renewable energy. A member of the Royal Society of Chemistry and the Chartered Quality Institute (UK), Dr. Ahmed also serves as an ISO 45001 Lead Auditor and NEBOSH-certified instructor, promoting environmental safety and sustainability standards. His involvement with UNDP, UNIDO, and USAID as an advisor and project collaborator underscores his leadership in global environmental policy and clean technology initiatives. As an editorial board member and reviewer for high-impact journals, he supports scientific integrity and innovation worldwide. His academic leadership and industrial collaborations have driven advancements in nanomaterials, biotissue engineering, climate informatics, and environmental modeling. Dr. Ahmed’s research excellence has earned numerous national and international honors, including the Presidential Award for academic distinction. His pioneering efforts continue to bridge the fields of chemistry, engineering, and health sciences, contributing to global sustainability and energy transformation. A forward-thinking researcher, he exemplifies excellence in scientific innovation, public health advancement, and environmental stewardship, shaping the future of green technologies and eco-smart systems.

Profiles: Google ScholarScopus | Orcid

Featured Publications

Iqbal, M. F., Irshad, I., Ahmed, I., Ahmad, S., Uzair, M., Kausar, R., Khan, M. R., Hasan, M., & Mustafa, G. (2025). Comparative study of the ability of green synthesized Se-NPs and CTS-NPs to overcome drought stress in Oryza sativa L. for regenerative nanoengineering in agriculture. New Journal of Chemistry.

Asghar, M. S., Ghazanfar, U., Al Huwayz, M., Alomar, M., Haq, Z., Ahmed, I., Idrees, M., Rafique, S., Bashir, S., & Abbasi, R. (2025, May 8). Efficient cytotoxic response against HepG2 cell lines and enhanced antibacterial activity of cationic substituted nano-hydroxyapatite. Journal of Inorganic and Organometallic Polymers and Materials.

Li, Q., Ahmed, I., Ngoc, P. M., Hoa, T. P., Dieu, T. V., Irshad, M. S., Nang, H. X., & Dao, V. D. (2024). Contemporary advances in polymer applications for sporting goods: Fundamentals, properties, and applications. RSC Advances.

Abbasi, M. S., Sultana, R., Ahmed, I., Adnan, M., Shah, U. A., Irshad, M. S., Vu, H. N., Do, L. T., Vu, H. H. T., Pham, T.-D., et al. (2024, August). Contemporary advances in organic thermoelectric materials: Fundamentals, properties, optimization strategies, and applications. Renewable and Sustainable Energy Reviews.

Asghar, M. S., Arshad, N., Irshad, M. S., Alwadie, N., Wang, X., Ali, M. A., Ahmed, I., Li, J., Tran, V. T., Doan, V. A., et al. (2024, May). Natural ore filter cube decorated polypyrrole for effective thermal management and enhanced solar steam generator. Solar Energy, 274, 112572.

Dr. Liyan Ni | Quantum Reaction Dynamics | Young Scientist Award

Dr. Liyan Ni | Quantum Reaction Dynamics | Young Scientist Award

Dr. Liyan Ni | Shandong Technology and Business University | China

Liyan Ni is a theoretical and computational chemist specializing in quantum dynamics, molecular simulations, and symplectic geometry algorithms. His research focuses on the quantum dynamics of chemical reactions, including isotope effects in OH/OD + CH3 systems and nucleophilic substitution reactions such as F– + CH3I → FCH3 + I–. He has made significant contributions to discrete symplectic dynamics, exploring non-unique Hamiltonians, velocity-position algorithm relations, and enhanced sampling methods for free energy calculations.

Ni is experienced in developing and implementing high-performance parallel algorithms for molecular dynamics and quantum/classical hybrid simulations. He has expertise in quantum chemistry software (Gaussian, ORCA) and molecular dynamics packages (GROMACS, AMBER), applying these tools to study charged interfacial systems, aqueous solutions, and reaction mechanisms.

His work integrates analytical theory with computational methods, aiming to improve the accuracy and efficiency of molecular simulations. He has contributed to several national-level projects funded by the National Natural Science Foundation of China, focusing on time-dependent hybrid quantum/classical dynamics and statistical mechanics of interfacial water systems.

Ni’s research outputs include multiple publications in Molecular Physics and Journal of Chemical Physics, addressing topics such as symplectic integrators, conserved quantities in nonlinear systems, and reduced-dimensional quantum dynamics. He has presented his work internationally at conferences like ISTCP and ACS.

Profile: Orcid

Featured Publications

Ni, L., Qiao, X., & Wang, D. (2025). Reduced-dimensional quantum dynamic study of the F⁻ + CH₃I → FCH₃ + I⁻ system. Molecular Physics.

Ni, L., & Hu, Z. (2024). On the relation between the velocity- and position-Verlet integrators. The Journal of Chemical Physics.

Ni, L., Zhao, Y., & Hu, Z. (2024). Non-unique Hamiltonians for discrete symplectic dynamics. The Journal of Chemical Physics.

Ni, L., Xin, X., Wang, Y., & Wang, D. (2020). Quantum dynamics study of isotope effects of the OD/OH + CH₃ reactions. Molecular Physics,