Assist. Prof. Dr. Lilan Zhang | Molecular Physics | Best Researcher Award 

Assist. Prof. Dr. Lilan Zhang | Molecular Physics | Best Researcher Award 

Assist. Prof. Dr. Lilan Zhang | Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences | China

Dr. Zhang Lilan is an Assistant Professor at the Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences. Her research primarily focuses on animal genetics, breeding, and the molecular mechanisms regulating adipose tissue development, fat deposition, and thermogenesis in pigs. She has made notable contributions to understanding the function of beige adipocytes and the genetic regulation of lipid metabolism. Dr. Zhang utilizes molecular biology, bioinformatics, and gene-editing approaches to uncover key regulators of adipogenesis and energy metabolism. Her work explores the adipose-liver-gut axis and its role in fat deposition and metabolic regulation. She has published extensively in high-impact journals including Cells, Protein & Cell, International Journal of Molecular Sciences, and Animal Feed Science and Technology. Dr. Zhang has also co-invented several patents related to regulating lipid metabolism, cold resistance, and ferroptosis in livestock. Her research has advanced insights into gene–environment interactions in animal physiology. She has been recognized with national awards for outstanding research presentations and contributions to animal genetics. Dr. Zhang has successfully led competitive research projects funded by the NSFC and other national programs. Her studies provide a strong foundation for improving meat quality and animal welfare. She is committed to translating molecular discoveries into practical applications in livestock breeding. Her interdisciplinary approach combines genetics, nutrition, and biotechnology. Dr. Zhang’s work strengthens the understanding of molecular regulators of fat deposition in pigs. She continues to contribute to innovations in animal biotechnology. Her research impact is recognized nationally and internationally in the field of animal science.

Profile: Scopus 

Featured Publications

Zhang, L., Hu, S., Cao, C., Chen, C., Liu, J., Wang, Y., Liu, J., Zhao, J., Tao, C., & Wang, Y. (2022). Functional and genetic characterization of porcine beige adipocytes. Cells, 11(751), 1–15.

Liu, J., Jiang, Y., Chen, C., Zhang, L., Wang, J., Yang, C., Wu, T., Yang, S., Tao, C., & Wang, Y. (2024). Bone morphogenetic protein 2 enhances porcine beige adipogenesis via AKT/mTOR and MAPK signaling pathways. International Journal of Molecular Sciences, 25(7), 3915.

Pan, J., Chui, L., Liu, T., Zheng, Q., Liu, X., Liu, L., Zhao, Y., Zhang, L., Song, M., Han, J., Huang, J., Tang, C., Tao, C., Zhao, J., & Wang, Y. (2023). Fecal microbiota was reshaped in ucp1 knock-in pigs via the adipose-liver-gut axis and contributed to less fat deposition. Microbiology Spectrum, 11(1), e03540-22.

Zhong, R., Gao, L., Zhang, L., Huang, Q., Chen, L., & Zhang, H. (2021). Effects of optimal carbohydrases cocktails screened using an in vitro method on nutrient and energy digestibility of different fiber source diets fed to growing pigs. Animal Feed Science and Technology, 271, 114728.

Liang, X., Tao, C., Pan, J., Zhang, L., Liu, L., Zhao, Y., Fan, Y., Cao, C., Liu, J., Zhang, J., Lam, S. M., Shui, G., Jin, W., Li, W., Zhao, J., Li, L., & Wang, Y. (2020). Rnf20 deficiency in adipocyte impairs adipose tissue development and thermogenesis. Protein & Cell, 12(6), 475–492.

Assist. Prof. Dr. Mingliang Long | Laser Ranging | Best Researcher Award 

Assist. Prof. Dr. Mingliang Long | Laser Ranging | Best Researcher Award 

Assist. Prof. Dr. Mingliang Long | Shanghai Astronomical Observatory | China

Dr. Long Mingliang is a distinguished researcher in optical engineering whose work centers on advanced laser technology and precision optical measurement for space applications. He has made notable contributions to the development of high-repetition-rate picosecond lasers and multi-telescope echo-receiving laser ranging systems, enhancing China’s capabilities in satellite and space debris observation. His pioneering research led to several international firsts in laser-based space debris measurement using both infrared and green picosecond lasers. He has addressed key challenges in high-power laser systems, such as self-focusing and beam divergence, achieving world-class performance in weak signal detection and long-distance precision ranging. Dr. Long has also contributed to the design of ultra-high repetition rate satellite laser ranging systems, enabling breakthroughs in backscattering avoidance and high-frequency measurement accuracy. His work supports critical advancements in arrayed telescope systems, improving multi-point space observation precision. Beyond laser ranging, he has explored applications in quantum communication and space-based time transfer, optimizing laser payload performance for space missions. His interdisciplinary research effectively bridges optical engineering, laser physics, and space science. Over his career, Dr. Long has authored more than thirty academic papers in leading journals and conference proceedings and holds eleven authorized invention patents. His innovations and leadership in laser ranging and optical detection technologies have positioned him as a leading figure in the field of advanced optical measurement.

Profiles: Scopus | Orcid

Featured Publication

Zhang, H., Long, M., Deng, H., Cheng, S., Wu, Z., Zhang, Z., Zhang, A., & Sun, J. (2021). Developments of space debris laser ranging technology including the applications of picosecond lasers. Applied Sciences, 11(21), 10080.

Assoc. Prof. Dr. Blagoy Blagoev | Solid-State Physics | Best Innovation Award

Assoc. Prof. Dr. Blagoy Blagoev | Solid-State Physics | Best Innovation Award

Assoc. Prof. Dr. Blagoy Blagoev | Solid-State Physics | Best Innovation Award

Institute of Solid State Physics, Bulgarian Academy of Sciences, Bulgaria.

Profile

Scopus

Orcid

Google Scholar

🎓 Early Academic Pursuits

Blagoy Spasov Blagoev’s academic journey reflects a deep-rooted dedication to physics and materials science. He began his studies at Sofia University “St. Kliment Ohridski”, where he obtained his Master’s degree in Physics in 2000. His early academic interests were strongly inclined toward solid-state physics, thin films, and superconductivity. Motivated by a desire to advance the understanding of nanostructured materials, he pursued a Ph.D. in Physics at the Institute of Electronics, Bulgarian Academy of Sciences (IE–BAS).

His doctoral thesis, titled “Magnetron Sputtering and Characterization of Nanolayers and Heterostructures from HTS YBCO and Sr/Ca-Doped Lanthanum Manganites” (2009), laid the groundwork for his lifelong research on superconductors, magnetic materials, and thin-film technologies. This period marked the development of his expertise in advanced thin-film fabrication methods such as magnetron sputtering and atomic layer deposition (ALD)—techniques that continue to define his scientific contributions today.

🧑‍🔬 Professional Endeavors

Currently serving as an Associate Professor at the Institute of Solid State Physics (ISSP), Bulgarian Academy of Sciences (BAS), Dr. Blagoev is part of the Department of Functional Materials and Nanostructures, specifically in the Laboratory of Physics of Materials and Low Temperatures. Over the past years, he has established himself as a key figure in the field of nanotechnology and thin-film materials.

His professional work centers on experimental physics, involving thermal and plasma ALD, magnetron sputtering, and electrospinning. He is recognized for his detailed studies on nanolayers, nanotubes, nanoparticles, and nanostructures, particularly their electrical, magnetic, and sensory properties. Beyond his primary research area, Dr. Blagoev actively explores micro- and nanoelectronic devices, spintronics, and superconductivity, combining theoretical insight with experimental innovation.

He has also been deeply involved in international collaborations with renowned institutions such as the Institute of Electrical Engineering (Slovakia), Polish Academy of Sciences (Warsaw and Wroclaw), and the Shanghai Institute of Ceramics, Chinese Academy of Sciences (China). These collaborations have strengthened his multidisciplinary research profile and facilitated knowledge exchange in advanced materials science.

🔬 Contributions and Research Focus

Dr. Blagoev’s research portfolio demonstrates a commitment to innovation in nanomaterials and thin-film technologies. His work encompasses the fabrication, characterization, and functionalization of nanostructured materials for applications in sensors, electronics, and spintronic devices.

He has authored over 75 scientific publications, with 71 in impact factor journals and more than 370 citations, highlighting the global relevance of his contributions. His most recent research investigates transition-metal-doped ZnO thin films, exploring their magneto-optical, dielectric, and multifunctional properties. His landmark publication “A Novel Approach to Obtaining Metal Oxide HAR Nanostructures by Electrospinning and ALD” (Materials, 2023) showcases an innovative route to produce high-aspect-ratio nanostructures—earning him first place for the Most Significant Scientific and Applied Achievement (2023) at ISSP-BAS.

Dr. Blagoev has played a central role in several national and international projects funded by the Bulgarian National Science Fund (BNSF), focusing on multifunctional oxide materials, dielectric structures for non-volatile memories, and the crystallization of graphene and carbon nanotubes. His ongoing project (2024–present), “Preparation of 3D Porous Nanostructures by Electrospinning and ALD and Investigation of Their Gas-Sensing Properties”, reflects his commitment to advancing sensor technologies and sustainable material solutions.

🏆 Accolades and Recognition

Dr. Blagoev’s excellence in scientific research has been widely recognized. He received the “Academic Emil Djakov” Award (2008) from IE–BAS for his pioneering work on thin-layer heterostructures combining ferromagnetic manganites and high-temperature superconductors, a study that deepened understanding of microwave processes and domain structures in advanced materials.

In 2023, he achieved 1st place for the most significant scientific and applied achievement at the Institute of Solid State Physics for his innovative approach to obtaining metal oxide HAR nanostructures. His active memberships in scientific societies and collaborations across Europe and Asia further underscore his standing as a leading materials physicist in Bulgaria and beyond.

🌍 Impact and Influence

Through his interdisciplinary research, Dr. Blagoev has significantly advanced the frontiers of nanomaterials science. His work on ALD and electrospinning techniques has provided new pathways for developing high-performance thin films with tunable electrical and magnetic properties. These findings have broad implications for energy devices, sensors, and nanoelectronics, directly influencing ongoing developments in functional materials and applied nanotechnology.

Moreover, his mentorship and collaborative projects have inspired a new generation of physicists, fostering innovation and experimental rigor in the Bulgarian scientific community. His consistent publication record and leadership in funded research projects highlight his enduring influence in European materials science research networks.

🚀 Legacy and Future Contributions

Assoc. Prof. Dr. Blagoy Blagoev’s scientific legacy lies in his pioneering research on functional nanomaterials and his role in integrating advanced deposition techniques into practical applications. Moving forward, his research continues to focus on developing nanoscale systems for next-generation sensors and multifunctional devices, aiming to bridge the gap between fundamental physics and technological application.

His ongoing efforts in 3D nanostructure fabrication and multiferroic materials are expected to yield breakthroughs in smart materials and sustainable nanotechnologies. With a strong foundation in experimental physics and a visionary approach to materials research, Dr. Blagoev stands as a prominent figure contributing to the evolution of modern nanoscience and applied physics.

✍️ Notable Publication

1. A. Paskaleva, D. Spassov, B. Blagoev, P. Terziyska
“Peculiarities of Electric and Dielectric Behavior of Ni- or Fe-Doped ZnO Thin Films Deposited by Atomic Layer Deposition”
Materials, 17(14), 3546, 2024.


2. B. Blagoev, B. Georgieva, K. Starbova, N. Starbov, I. Avramova, K. Buchkov, P. Tzvetkov, R. Stoykov, P. Terziyska, D. Delibaltov, V. Mehandzhiev, A. Paskaleva
“A Novel Approach to Obtaining Metal Oxide HAR Nanostructures by Electrospinning and ALD”
Materials, 16(23), 7489, 2023.


3. A. Galluzzi, K. Buchkov, B. Blagoev, A. Paskaleva, I. Avramova, V. Mehandzhiev, P. Tzvetkov, P. Terziyska, D. Kovacheva, M. Polichetti
“Strong Magneto-Optical Kerr Effects in Ni-Doped ZnO Nanolaminate Structures Obtained by Atomic Layer Deposition”
Materials, 16(19), 6547, 2023.


4. A. Paskaleva, K. Buchkov, A. Galluzzi, D. Spassov, B. Blagoev, Tz. Ivanov, V. Mehandzhiev, I. Avramova, P. Terziyska, D. Kovacheva, M. Polichetti
“Magneto-Optical and Multiferroic Properties of Transition-Metal (Fe, Co, or Ni)-Doped ZnO Layers Deposited by ALD”
ACS Omega, 7(47), 43306–43315, 2022.


5. A. Paskaleva, B. S. Blagoev, P. T. Terziyska, V. Mehandzhiev, P. Tzvetkov, D. Kovacheva, I. Avramova, D. Spassov, T. Ivanova, K. Gesheva
“Structural, Morphological and Optical Properties of Atomic Layer Deposited Transition Metal (Co, Ni or Fe)-Doped ZnO Layers”
Journal of Materials Science: Materials in Electronics, 32, 7162–7175, 2021.