Jingwei Tian – Materials Science and Technology – Research Excellence Achievement Award 

Dr. Jingwei Tian - Materials Science and Technology - Research Excellence Achievement Award 

Harbin institute of technology - China

Author Profile

Scopus

Google Scholar

🎓 Early Academic Pursuits

Dr. Jingwei Tian’s academic journey began at the prestigious Harbin Institute of Technology, where he pursued both his Master’s and Doctoral degrees in engineering mechanics and structural engineering. During this period, he developed a strong foundation in materials science and technology, specifically focusing on corrosion resistance and composite material applications. His doctoral research, guided by Prof. Guijun Xian, culminated in a dissertation titled “Preparation and Performance Study of Anti-Wear and Corrosion-Resistant Epoxy Resin Matrix Composites,” demonstrating his early commitment to advancing durable and resilient materials.

💼 Professional Endeavors

Upon completing his doctoral studies, Dr. Tian began his career as a Lecturer and Postdoctoral Researcher at the School of Civil Engineering, Harbin Institute of Technology, under the mentorship of Prof. Huigang Xiao. His professional focus on materials science and technology has led him to participate in numerous high-profile projects. Notably, he is a key participant in projects funded by the National Natural Science Foundation of China and the National Key Research and Development Program, which address critical issues in carbon fiber-reinforced polymer (CFRP) composites and thermoplastic composite materials for marine environments.

🔬 Contributions and Research Focus

Dr. Tian's contributions to materials science and technology are particularly evident in his extensive research on carbon fiber composites, epoxy resin matrix composites, and thermoplastic composite tendons. His work spans various applications, including the development of national standards for evaluating hygrothermal resistance in carbon fiber-reinforced composites. Leading the project on self-healing mechanisms of carbon fiber composites, he is pioneering functional design approaches that enhance material durability and sustainability. This project, supported by the State Key Laboratory of Polymer Materials Engineering, signifies his role in advancing the field.

🌍 Impact and Influence

Dr. Tian’s influence extends beyond research through his roles in organizing numerous national and international conferences, such as the National FRP Application Technology Exchange Meeting and the SAMPE China 2024 International Conference. His organizational roles have helped bridge academic research with industry needs in fiber composites and civil engineering applications. Furthermore, his involvement as a Youth Editorial Board Member for the International Journal of Mechanical Engineering and an expert reviewer for several SCI journals reflects his respected standing in the materials science and technology community.

🏆Academic Cites

Dr. Tian’s research contributions have been widely cited in academic literature, demonstrating the relevance and impact of his findings. His publications on corrosion-resistant coatings and carbon fiber composites have informed advancements in composite material applications, particularly within civil engineering infrastructure. These citations underscore the practical significance of his work in addressing real-world material challenges.

🌟 Legacy and Future Contributions

Looking forward, Dr. Tian aims to leave a lasting legacy through continued contributions to materials science and technology. His research on self-healing carbon fiber composites and degradable epoxy resin-based CFRP materials promises to advance sustainable practices in materials engineering. As he progresses in his academic career, Dr. Tian is poised to shape future developments in civil engineering materials, promoting resilience and longevity in infrastructure applications. His commitment to innovation and excellence will undoubtedly leave an enduring impact on both the academic and engineering communities.

📝Notable Publication


Article Title: Design, Preparation, and Mechanical Properties of Glass Fiber Reinforced Thermoplastic Self-Anchor Plate Cable Exposed in Alkaline Solution Environment

Authors: Zhang, Z., Ji, Q., Guo, Z., He, T., Xian, G.

Journal: Polymer Composites

Year: 2024

Citations: 4


Article Title: Effect of Hygrothermal Aging on the Friction Behavior and Wear Mechanism of Multi-Filler Reinforced Epoxy Composites for Coated Steel

Authors: Tian, J., Qi, X., Xian, G.

Journal: Journal of Materials Research and Technology

Year: 2024

Citations: 0


Article Title: Mechanical Properties Evaluation of Glass Fiber Reinforced Thermoplastic Composite Plate Under Combined Bending Loading and Water Immersion

Authors: Xian, G., Zhou, P., Li, C., Zhang, Z., He, T.

Journal: Construction and Building Materials

Year: 2024

Citations: 3


Article Title: Long-Term Properties Evolution and Life Prediction of Glass Fiber Reinforced Thermoplastic Bending Bars Exposed in Concrete Alkaline Environment

Authors: Xian, G., Bai, Y., Zhou, P., He, T., Zhang, Z.

Journal: Journal of Building Engineering

Year: 2024

Citations: 9


Article Title: Water Absorption and Property Evolution of Epoxy Resin Under Hygrothermal Environment

Authors: Xian, G., Niu, Y., Qi, X., Yue, Q., Guo, R.

Journal: Journal of Materials Research and Technology

Year: 2024

Citations: 0


Article Title: Design of Novel Glass Fiber Reinforced Polypropylene Cable-Anchor Component and Its Long-Term Properties Exposed in Alkaline Solution

Authors: Xin, M., Zhang, Y., Guo, Z., Zhang, Z., Xian, G.

Journal: Case Studies in Construction Materials

Year: 2024

Citations: 0

José Euliser Mosquera Ruiz | Material development | Best Researcher Award

Dr. José Euliser Mosquera Ruiz | Material development | Best Researcher Award 

Université de Technologie de Compiègne | France 

AUTHOR PROFILE

EARLY ACADEMIC PURSUITS

Dr. José Euliser Mosquera Ruiz began his academic journey with a Bachelor of Science in Chemical Engineering from Universidad del Atlántico in Colombia in 2011. He further pursued a Master’s in Environmental Engineering at Universidad Nacional de Córdoba in Argentina, completing it in 2015. His dedication to advancing knowledge in the field led him to a Ph.D. in Engineering Sciences, which he earned in 2021 from the same institution. His early academic pursuits laid a strong foundation for his expertise in material development, particularly in polymeric and carbonaceous materials.

PROFESSIONAL ENDEAVORS

Dr. Mosquera Ruiz’s professional career is marked by significant roles in both academia and industry. Currently, he serves as a Postdoctoral Researcher at UTC Compiègne, where he applies his expertise in material development. His previous roles include serving as Department Coordinator for Environment and as a Laboratory Chemist-Analyst. His diverse experience has enriched his skills in synthesizing and characterizing polymeric resins, developing porous carbonaceous materials, and implementing environmental and chemical engineering practices. His work extends to designing and constructing high-pressure experimental apparatuses, underscoring his technical proficiency.

CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Mosquera Ruiz has made notable contributions to material development, especially in synthesizing and characterizing polymeric resins from bio-based raw materials. His expertise includes physical and chemical activation of carbonaceous materials, characterization techniques such as SEM, EDX, TEM, and FTIR, and the use of supercritical fluid technologies. His research also spans environmental engineering, where he has applied ISO standards for effective environmental management, conducted impact assessments, and designed water treatment systems. His work in material development and environmental engineering is crucial for advancing sustainable practices and innovative material solutions.

IMPACT AND INFLUENCE

Dr. Mosquera Ruiz’s impact is evident through his research in material development, which has practical applications in various industries. His development of porous carbonaceous materials and advanced polymer processing techniques contributes to improving material properties and sustainability. His teaching experience has also influenced the next generation of engineers, fostering collaboration and critical thinking among students. His contributions to environmental engineering practices and standards have enhanced the effectiveness of water treatment systems and quality assurance protocols.

ACADEMIC CITATIONS

Dr. Mosquera Ruiz’s research has been recognized in the academic community, reflecting his significant contributions to material development and environmental engineering. His publications and scientific reports are well-cited, demonstrating the relevance and impact of his work in advancing material science and engineering practices.

LEGACY AND FUTURE CONTRIBUTIONS

Dr. Mosquera Ruiz is poised to leave a lasting legacy through his continued work in material development and environmental engineering. His ongoing research at UTC Compiègne and his prior accomplishments suggest a future rich with innovative contributions to polymeric materials and sustainable engineering practices. His ability to integrate material science with practical applications positions him as a leading figure in advancing both fields.

MATERIAL DEVELOPMENT 

Dr. Mosquera Ruiz’s expertise in material development is a cornerstone of his research and professional achievements. His work in synthesizing and characterizing polymeric resins, developing porous carbonaceous materials, and employing supercritical fluid technologies highlights his significant contributions to the field. His focus on material development not only advances scientific knowledge but also addresses practical challenges in material science and environmental engineering.

NOTABLE PUBLICATION

Dr. Muhammad Moin | Material science | Young Scientist Award 

Dr. Muhammad Moin | Material science | Young Scientist Award 

University of Engineering and Technology Lahore | Pakistan

AUTHOR PROFILE

EARLY ACADEMIC PURSUITS

Dr. Muhammad Moin's academic journey began with secondary education at Government High School, Pakpttan, where he completed his Secondary School Certificate in 2011. He then pursued Intermediate studies at Abaid Ullah Educational Complex Higher Secondary School, Pakpttan, graduating in 2013. Dr. Moin obtained his Bachelor's degree in Physics from the University of the Punjab, Lahore, Pakistan, from July 2013 to October 2015. His academic quest continued with an M.Phil. in Nano Science and Technology from the University of Engineering and Technology (UET), Lahore, Pakistan, which he completed from November 2015 to December 2019. During this period, Dr. Moin engaged deeply in research related to Material Science.

PROFESSIONAL ENDEAVORS

Dr. Moin has amassed significant experience in the field of Material Science through his role as a Research Scientist at the University of Engineering and Technology Lahore. He worked at this position from October 2020 to December 2022, where he contributed to research involving Density Functional Theory (DFT) and computational simulations using Material Studio software. His expertise includes methods such as General Gradient Approximation (GGA) and Hybrid Functional (HSEO6, HSEO3), and tools like WIEN2k. Dr. Moin's hands-on experience extends to working with CVD (Chemical Vapor Deposition) and centrifugation machines, further showcasing his practical skills in Material Science.

CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Moin's research primarily focuses on Material Science, emphasizing computational simulations and theoretical modeling. His work involves advanced techniques in Density Functional Theory (DFT) and computational simulations, which are critical for understanding material properties and behavior. His research contributes to the development and enhancement of materials through methods such as General Gradient Approximation (GGA) and Hybrid Functional (HSEO6, HSEO3). Dr. Moin's involvement in the application of CVD and centrifugation techniques further underscores his commitment to advancing Material Science.

IMPACT AND INFLUENCE

Dr. Moin's contributions to Material Science have impacted both theoretical and practical aspects of the field. His use of sophisticated computational methods and simulation tools has provided valuable insights into material properties and behaviors. His work with advanced techniques like DFT and Hybrid Functional methods has influenced ongoing research and development in Material Science. By leveraging his expertise in CVD and centrifugation techniques, Dr. Moin has contributed to the practical application of material science principles, enhancing the understanding and development of new materials.

ACADEMIC CITATIONS

Dr. Moin's research contributions in Material Science are supported by his academic work and practical applications. Although specific citations are not listed, his research activities, particularly in computational simulations and advanced material processing techniques, are likely to be referenced by peers in the field. His contributions to understanding material properties and behaviors through sophisticated methods and tools reflect his academic and professional impact.

LEGACY AND FUTURE CONTRIBUTIONS

Dr. Moin's legacy in Material Science is marked by his dedication to advancing the field through computational simulations and experimental techniques. His future contributions are expected to further explore and refine material science methodologies, particularly in the application of DFT and advanced simulation techniques. By continuing to innovate in the development and processing of new materials, Dr. Moin aims to make significant advancements in Material Science, leaving a lasting impact on both theoretical research and practical applications.

MATERIAL SCIENCE 

Dr. Moin's research prominently features the keywords Material Science, Density Functional Theory (DFT), computational simulations, General Gradient Approximation (GGA), Hybrid Functional (HSEO6, HSEO3), and CVD (Chemical Vapor Deposition). His work in Material Science involves applying these advanced techniques and tools to understand and enhance material properties, contributing to the broader field of material development and innovation. The integration of these keywords highlights the significance of Dr. Moin's research and its impact on advancing material science methodologies.

NOTABLE PUBLICATION