Mrs. Maryam Jahanbakhshi | Electromagnetism | Research Excellence Award

Mrs. Maryam Jahanbakhshi | Electromagnetism | Research Excellence Award

Mrs. Maryam Jahanbakhshi | University of West Bohemia | Czech Republic

Maryam Jahanbakhshi is a researcher in electrical engineering whose work centers on advanced antenna systems, RF and microwave circuit design, and high-performance communication technologies, contributing extensively to innovations in satellite communication, IoT networks, LTE systems, and radar applications; she has developed collinear array antennas with switched beamforming, compact microstrip lowpass filters with harmonic suppression, wideband Wilkinson power dividers, resonator-based miniaturized circuits, and tri-band filters tailored for modern communication requirements, while also advancing 3D antenna array concepts for next-generation ground stations and IoT gateways; her expertise extends to analyzing real 5G signals, designing and measuring patch antennas, and conducting high-frequency hardware evaluation using electromagnetic simulation tools and precision measurement equipment; she integrates theoretical modeling with hands-on fabrication, prototyping, and calibration, producing impactful research published across respected journals and international conferences; her work reflects strong command of RF simulation environments, circuit design platforms, and microwave analysis techniques, paired with practical experience in software testing, automated validation workflows, and functional safety frameworks, enabling her to bridge communication engineering with system-level reliability; her contributions continue to support the development of compact, efficient, and technologically advanced RF, microwave, and antenna systems that meet the evolving demands of modern wireless communication.

Profile: Google Scholar

Featured Publications

Siahkamari, H., Yasoubi, Z., Jahanbakhshi, M., Mousavi, S. M. H., & Siahkamari, P. (2018). Design of compact Wilkinson power divider with harmonic suppression using T-shaped resonators. Frequenz, 72(5-6), 253–259.

Jahanbakhshi, M., & Hayati, M. (2016). Design of a compact microstrip lowpass filter with sharp roll-off using combined T-shaped and L-shaped resonators. Electronics Letters, 52(23), 1931–1933.

Siahkamari, H., Jahanbakhshi, M., Al-Anbagi, H. N., Abdulhameed, A. A., … (2022). Trapezoid-shaped resonators to design compact branch line coupler with harmonic suppression. AEU - International Journal of Electronics and Communications, 144, 154032.

Jahanbakhshi, M., Hayati, M., & Veřtat, I. (2022). Prototype of compact microstrip lowpass filter for active phased antenna array with ultra-wide stopband using funnel shaped resonator. In 2022 International Conference on Applied Electronics (AE) (pp. 1–4).

Siahkamari, H., Lotfi, S., Tahmasbi, M., Blecha, T., … Jahanbakhshi, M. (2022). Design and analysis of a compact and harmonic suppressed microstrip lowpass filter. International Journal of Engineering & Technology Sciences, 1–12.

Assoc. Prof. Dr. Valeriy Bacherikov | Spectroscopy | Excellence in Research

Assoc. Prof. Dr. Valeriy Bacherikov | Spectroscopy | Excellence in Research

Assoc. Prof. Dr. Valeriy Bacherikov | A. V. Bogatsky Physico-Chemical Institute NAS of Ukraine

Valeriy Anatoliyovych Bacherikov is a distinguished scientist in organic and medicinal chemistry, specializing in stereochemistry, supramolecular chemistry, and pharmaceutical applications. His research focuses on the design, synthesis, and study of biologically active compounds, including antiviral agents targeting coronavirus proteases. He has contributed to the development and clinical evaluation of antiviral drugs such as Amizon, demonstrating their efficacy in viral infections and reducing complications. Bacherikov also explores the use of medicinal herbs in pharmaceutical and cosmetic formulations, highlighting modern trends in phytopharmaceutical research. He has investigated alternative strategies to combat antibiotic resistance, including chromium-based solutions and innovative therapeutic approaches. His publications in national and international journals and conference proceedings reflect broad scientific influence and a commitment to advancing chemical and biomedical knowledge. He actively organizes scientific conferences, particularly in pharmacology, cosmetology, and aromology, and serves as a peer reviewer for high-impact journals, supporting rigorous scientific standards. Bacherikov mentors students and junior researchers in chemistry, biochemistry, and pharmaceutical sciences, cultivating the next generation of scientists. His work bridges fundamental chemical research and practical biomedical applications, demonstrating the translational value of his studies. Recognized for integrating organic chemistry with pharmacological insights, he continues to advance antiviral drug design, supramolecular chemistry, and phytopharmaceutical development. Through teaching, research supervision, and active participation in scientific communities, he influences both academic and applied research landscapes. His ongoing studies promise further advancements in antiviral agents, novel therapeutics, and interdisciplinary approaches in pharmaceutical sciences.

Profile: Orcid

Featured Publications

Zlatov, Y., Bacherikov, V., Teslyuk, O., Zheltvay, I., Ognichenko, L., & Derkach, L. (2026). Study of luminescence properties of lanthanide complexes of dehydroacetic acid derivatives. Journal of Luminescence. Advance online publication.

Bacherikov, V. (2022). Total synthesis, mechanism of action and antitumor efficacy of camptothecin and some of its analogues. Anti-Cancer Agents in Medicinal Chemistry, 22(5), 501–517.

Bacherikov, V. A., Chittiboyina, A. G., & Avery, M. A. (2017). Design, synthesis, and biological evaluation of peptidomimetic N-substituted Cbz-4-Hyp-Hpa-amides as novel inhibitors of Plasmodium falciparum. Chemistry & Biodiversity, 14(7), e1700037.

Bacherikov, V. V., & Bacherikov, V. A. (2015). Dr. Samokhotskiy's method of healing inflammation by the analysis and regulation of blood electrolyte balance. Journal of Experimental Therapeutics & Oncology.

Bacherikov, V. (2015). Strategy and preparation of some building blocks for synthesis of branched oligosaccharides. Odessa National University Herald. Series: Chemistry, 1(53), 445–453.

Dr. Ali Shafeiey | Metallurgy | Editorial Board Member

Dr. Ali Shafeiey | Metallurgy | Editorial Board Member

Dr. Ali Shafeiey | Sahand University of Technology | Iran

Ali Shafeiey is a materials engineer with a strong focus on advanced ceramics, nanomaterials, and shape memory alloys. His research emphasizes the synthesis, processing, and characterization of transparent magnesium aluminate spinel ceramics and the development of inert anodes. He investigates the effects of dopants, processing parameters, and sintering techniques on the optical, structural, and mechanical properties of ceramic materials. Ali has published in high-impact journals such as Ceramics International, Journal of Alloys & Compounds, and Materials Chemistry and Physics. He has presented his findings at national and international conferences, highlighting innovations in slip casting, spark plasma sintering, and nanomaterial fabrication. His work bridges experimental studies with analytical characterization methods to enhance material performance. Ali’s expertise includes sol-gel processing, electrospinning, and magnetron sputtering for functional ceramics. He also possesses technical proficiency in welding inspection and industrial material applications. His research aims to develop high-performance, transparent ceramic powders and components for engineering and industrial use. Ali combines his deep understanding of crystallography, heat treatment, and mechanical properties to optimize materials for practical applications. He has explored structure-transmittance relationships and the influence of particle size, density, and agglomeration on material behavior. His work contributes to advancing both fundamental materials science and applied engineering solutions. Ali’s studies support the design of durable, functional, and nanostructured ceramics with tailored properties. He is committed to integrating experimental innovation with material characterization to solve engineering challenges. His contributions enhance knowledge in the fields of advanced ceramics, nanomaterials, and functional alloys. Overall, Ali Shafeiey is recognized for his impactful research and dedication to advancing materials science.

Profile: Google Scholar

Featured Publications

Shahbazi, H., Tataei, M., Enayati, M. H., Shafeiey, A., & Malekabadi, M. A. (2019). Structure-transmittance relationship in transparent ceramics. Journal of Alloys and Compounds, 785, 260–285.

Shafeiey, A., Enayati, M. H., & Al-Haji, A. (2017). The effect of slip casting parameters on the green density of MgAl₂O₄ spinel. Ceramics International, 43(8), 6069–6074.

Shafeiey, A., Enayati, M. H., & Alhaji, A. (2018). The effect of slip casting and spark plasma sintering (SPS) temperature on the transparency of MgAl₂O₄ spinel. Ceramics International, 44(4), 3536–3540.

Ghazanfari, S., Torki, M., Shafeiey, A., Milani, M., & Emadi, R. (2020). The influence of Y³⁺ and Mg²⁺ dopants on the transparency behavior of alumina ceramics. Materials Chemistry and Physics, 247, 122905.