Dr. Spyridon Kosionis | Quantum Optics | Research Excellence Award

Dr. Spyridon Kosionis | University of Patras | Greece

Spyridon G. Kosionis is a theoretical and computational physicist specializing in quantum nonlinear optics, nanophotonics, and quantum technologies. His research focuses on light–matter interactions in nanostructured quantum systems, including semiconductor quantum dots, quantum wells, and hybrid plasmonic–graphene structures. He investigates nonlinear optical responses, Kerr effects, four-wave mixing, pump–probe dynamics, resonance fluorescence, photon-statistics engineering, and quantum control of excitonic systems, addressing challenges such as phonon-induced decoherence. Kosionis combines analytical modeling and advanced numerical simulations to study exciton–plasmon and exciton–phonon interactions relevant to emerging quantum computing and nanophotonic platforms. His work contributes to the development of next-generation quantum and optoelectronic technologies. He has been involved in multiple national and international research projects, focusing on coherent light–matter dynamics and theoretical plasmonics. He has supervised master’s and PhD students, guiding research in nonlinear optical processes and quantum coherence. His studies advance the understanding of quantum control and light manipulation at the nanoscale. Kosionis actively contributes to scientific journals as a reviewer and participates in international collaborations. His research supports innovations in quantum information, nanophotonics, and optoelectronic device design. He has a strong publication record, with research widely cited in the fields of quantum optics and photonics. His work bridges fundamental theory and practical applications in emerging quantum technologies. Kosionis continues to explore advanced modeling techniques for controlling quantum systems and enhancing photonic functionalities.

Profile: Google Scholar

Featured Publications

Kosionis, S. G., Terzis, A. F., Sadeghi, S. M., & Paspalakis, E. (2012). Optical response of a quantum dot–metal nanoparticle hybrid interacting with a weak probe field. Journal of Physics: Condensed Matter, 25(4), 045304.

Paspalakis, E., Evangelou, S., Kosionis, S. G., & Terzis, A. F. (2014). Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system. Journal of Applied Physics, 115(8), 105.

Terzis, A. F., Kosionis, S. G., Boviatsis, J., & Paspalakis, E. (2016). Nonlinear optical susceptibilities of semiconductor quantum dot–metal nanoparticle hybrids. Journal of Modern Optics, 63(5), 451–461.

Kosionis, S. G., Terzis, A. F., Yannopapas, V., & Paspalakis, E. (2012). Nonlocal effects in energy absorption of coupled quantum dot–metal nanoparticle systems. The Journal of Physical Chemistry C, 116(44), 23663–23670.

Kosionis, S. G., Terzis, A. F., & Paspalakis, E. (2007). Optimal control of a symmetric double quantum-dot nanostructure: analytical results. Physical Review B, 75(19), 193305.

 

Dr. Spyridon Kosionis | Quantum Optics | Research Excellence Award

You May Also Like