Xiaojun Li | Optical Physics | Research Excellence Award

Assoc. Prof. Dr. Xiaojun Li | Optical Physics | Research Excellence Award

University of South China | China

Dr. Xiaojun Li is an Associate Professor at the University of South China and a distinguished researcher in atomic, molecular, and optical physics, with strong interdisciplinary expertise in optoelectronic materials, devices, and intelligent display technologies. He received his PhD from the University of Macau and is recognized as a Shenzhen High-Level Talent and Bao’an District High-Level Talent. He has served as Deputy Director of the Guangdong Province Intelligent Energy-Saving LED Display Screen Engineering R&D Center, demonstrating leadership in both academic research and applied engineering. Dr. Li’s research focuses on OLED and LED device physics, metasurfaces, ultrafast spectroscopy, carrier dynamics, perovskite micro- and nanolasers, electronic packaging, and intelligent domain control systems. He has made significant contributions to enhancing the stability and performance of white OLED devices by developing multi-layer encapsulation architectures that provide environmental isolation, stress buffering, and efficient thermal management, substantially extending device operational lifetime. In the field of optical sensing and photonics, Dr. Li proposed a spectrometer-free refractive index sensing strategy based on electro-optically tunable, high-Q metasurfaces, enabling ultra-high sensitivity while maintaining robustness against fabrication imperfections. His fundamental studies on perovskite microdisks, nanowires, and photochromic phase transitions have advanced understanding of coherent light emission, exciton recombination, and optical gain mechanisms, with demonstrated potential for lasers and optical encryption applications. Dr. Li has authored 22 peer-reviewed publications, including multiple Q1 journal articles, which have received over 500 citations. He is also an exceptionally prolific innovator, holding 79 patents, including invention patents, utility models, and international filings. These patents support practical technologies in flexible and vehicle-mounted displays, OLED encapsulation, electronic packaging, and intelligent human–machine interaction systems. Through the integration of fundamental optical physics and scalable device engineering, Dr. Li has established a strong record of research excellence and technological impact, positioning him as a compelling candidate for the Research Excellence Award in Atomic, Molecular, and Optical Physics.

View Orcid Profile

Featured Publications

Dr. Spyridon Kosionis | Quantum Optics | Research Excellence Award

Dr. Spyridon Kosionis | Quantum Optics | Research Excellence Award

Dr. Spyridon Kosionis | University of Patras | Greece

Spyridon G. Kosionis is a theoretical and computational physicist specializing in quantum nonlinear optics, nanophotonics, and quantum technologies. His research focuses on light–matter interactions in nanostructured quantum systems, including semiconductor quantum dots, quantum wells, and hybrid plasmonic–graphene structures. He investigates nonlinear optical responses, Kerr effects, four-wave mixing, pump–probe dynamics, resonance fluorescence, photon-statistics engineering, and quantum control of excitonic systems, addressing challenges such as phonon-induced decoherence. Kosionis combines analytical modeling and advanced numerical simulations to study exciton–plasmon and exciton–phonon interactions relevant to emerging quantum computing and nanophotonic platforms. His work contributes to the development of next-generation quantum and optoelectronic technologies. He has been involved in multiple national and international research projects, focusing on coherent light–matter dynamics and theoretical plasmonics. He has supervised master’s and PhD students, guiding research in nonlinear optical processes and quantum coherence. His studies advance the understanding of quantum control and light manipulation at the nanoscale. Kosionis actively contributes to scientific journals as a reviewer and participates in international collaborations. His research supports innovations in quantum information, nanophotonics, and optoelectronic device design. He has a strong publication record, with research widely cited in the fields of quantum optics and photonics. His work bridges fundamental theory and practical applications in emerging quantum technologies. Kosionis continues to explore advanced modeling techniques for controlling quantum systems and enhancing photonic functionalities.

Profile: Google Scholar

Featured Publications

Kosionis, S. G., Terzis, A. F., Sadeghi, S. M., & Paspalakis, E. (2012). Optical response of a quantum dot–metal nanoparticle hybrid interacting with a weak probe field. Journal of Physics: Condensed Matter, 25(4), 045304.

Paspalakis, E., Evangelou, S., Kosionis, S. G., & Terzis, A. F. (2014). Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system. Journal of Applied Physics, 115(8), 105.

Terzis, A. F., Kosionis, S. G., Boviatsis, J., & Paspalakis, E. (2016). Nonlinear optical susceptibilities of semiconductor quantum dot–metal nanoparticle hybrids. Journal of Modern Optics, 63(5), 451–461.

Kosionis, S. G., Terzis, A. F., Yannopapas, V., & Paspalakis, E. (2012). Nonlocal effects in energy absorption of coupled quantum dot–metal nanoparticle systems. The Journal of Physical Chemistry C, 116(44), 23663–23670.

Kosionis, S. G., Terzis, A. F., & Paspalakis, E. (2007). Optimal control of a symmetric double quantum-dot nanostructure: analytical results. Physical Review B, 75(19), 193305.

 

Prof. Dr. Jun Zhong | Modeling and Simulation | Best Researcher Award

Prof. Dr. Jun Zhong | Modeling and Simulation | Best Researcher Award

Prof. Dr. Jun Zhong | NCIAE | China

Jun Zhong is a leading researcher in computational materials science, focusing on the atomistic modeling of materials physics and chemistry. He specializes in molecular dynamics, density functional theory, and multi-scale simulations to study adhesion, lubrication, wear mechanisms, and corrosion inhibition in metals and alloys. His work includes the development of MEAM interatomic potentials and modeling surface segregation phenomena in advanced materials. He has investigated catalyst performance, mechanical-electrical property regulation, and deformation mechanisms in metals, composites, and graphene foams. Zhong has contributed to understanding nano-scale interactions, alloy surface behaviors, and interface adhesion. His research integrates computational and theoretical approaches to address challenges in aerospace materials, nanomaterials, and renewable energy technologies. He has authored high-impact publications in journals such as Phys. Rev. B, J. Phys. Chem. C, and Applied Surface Science. He has also written influential monographs on tribology, adhesion, and nanomechanics, widely recognized in the scientific community. Zhong has presented his work at numerous international conferences and workshops. He has been elected Member of the Institute of Physics (MInstP, UK) and recognized as a world-class scientific monograph author. His teaching excellence has been acknowledged in both China and the U.S. He has led and participated in multiple national and international research projects. His studies bridge atomistic modeling and practical applications, advancing materials engineering and aerospace technologies. His research impacts surface phenomena, alloy design, and energy-related materials. Zhong continues to push the boundaries of computational materials science, integrating theory and simulation for innovative solutions.

Profile: Orcid

Featured Publications

Zhang, Y., Zhu, H., Liu, F., Zhong, J., Lu, W., Wang, C., Wang, L., Wu, Z., & Li, B. (2025). Influence and regulation of amorphous layers on phonon transport at SiC/Si interface. International Journal of Heat and Mass Transfer.

Zhang, H., Xu, S., Zou, S., Zhou, H., Ouyang, W., & Zhong, J. (2025). Gas–solid phase separation of active Brownian particles under confinement of hard walls. Nanomaterials.

Ning, Y.-Q., Zhong, J., Jie, A., Zhou, X., Xue, X.-X., Ang, Y. S., & Zhao, Y.-Q. (2025). Designing the weak Fermi pinning and ferromagnetic van der Waals contacts to bilayer CrI3. Applied Physics Letters.

Nie, G., Zhong, F., Zhong, J., Zhu, H., & Zhao, Y.-Q. (2024). Engineering photoelectric conversion efficiency in two-dimensional ferroelectric Cs2PbI2Cl2/Sc2CO2 heterostructures. Applied Physics Letters, 124, 252903.

Nie, G., Zhong, F., Zhong, J., Zhu, H., & Zhao, Y.-Q. (2024). Engineering photoelectric conversion efficiency in two-dimensional ferroelectric Cs2PbI2Cl2/Sc2CO2 heterostructures. Applied Physics Letters.

 

Mrs. Maryam Jahanbakhshi | Electromagnetism | Research Excellence Award

Mrs. Maryam Jahanbakhshi | Electromagnetism | Research Excellence Award

Mrs. Maryam Jahanbakhshi | University of West Bohemia | Czech Republic

Maryam Jahanbakhshi is a researcher in electrical engineering whose work centers on advanced antenna systems, RF and microwave circuit design, and high-performance communication technologies, contributing extensively to innovations in satellite communication, IoT networks, LTE systems, and radar applications; she has developed collinear array antennas with switched beamforming, compact microstrip lowpass filters with harmonic suppression, wideband Wilkinson power dividers, resonator-based miniaturized circuits, and tri-band filters tailored for modern communication requirements, while also advancing 3D antenna array concepts for next-generation ground stations and IoT gateways; her expertise extends to analyzing real 5G signals, designing and measuring patch antennas, and conducting high-frequency hardware evaluation using electromagnetic simulation tools and precision measurement equipment; she integrates theoretical modeling with hands-on fabrication, prototyping, and calibration, producing impactful research published across respected journals and international conferences; her work reflects strong command of RF simulation environments, circuit design platforms, and microwave analysis techniques, paired with practical experience in software testing, automated validation workflows, and functional safety frameworks, enabling her to bridge communication engineering with system-level reliability; her contributions continue to support the development of compact, efficient, and technologically advanced RF, microwave, and antenna systems that meet the evolving demands of modern wireless communication.

Profile: Google Scholar

Featured Publications

Siahkamari, H., Yasoubi, Z., Jahanbakhshi, M., Mousavi, S. M. H., & Siahkamari, P. (2018). Design of compact Wilkinson power divider with harmonic suppression using T-shaped resonators. Frequenz, 72(5-6), 253–259.

Jahanbakhshi, M., & Hayati, M. (2016). Design of a compact microstrip lowpass filter with sharp roll-off using combined T-shaped and L-shaped resonators. Electronics Letters, 52(23), 1931–1933.

Siahkamari, H., Jahanbakhshi, M., Al-Anbagi, H. N., Abdulhameed, A. A., … (2022). Trapezoid-shaped resonators to design compact branch line coupler with harmonic suppression. AEU - International Journal of Electronics and Communications, 144, 154032.

Jahanbakhshi, M., Hayati, M., & Veřtat, I. (2022). Prototype of compact microstrip lowpass filter for active phased antenna array with ultra-wide stopband using funnel shaped resonator. In 2022 International Conference on Applied Electronics (AE) (pp. 1–4).

Siahkamari, H., Lotfi, S., Tahmasbi, M., Blecha, T., … Jahanbakhshi, M. (2022). Design and analysis of a compact and harmonic suppressed microstrip lowpass filter. International Journal of Engineering & Technology Sciences, 1–12.

Dr. Geetha D. V. | Crystallography | Best Researcher Award

Dr. Geetha D. V. | Crystallography | Best Researcher Award

Dr. Geetha D. V. | University of Mysore | India

Dr. Geetha D. V.’s research primarily focuses on the structural analysis and characterization of biologically and medicinally relevant compounds. She extensively utilizes X-ray crystallography and powder diffraction techniques to elucidate the three-dimensional structures of heterocyclic compounds, chalcones, indole derivatives, and hydrazones, providing detailed insights into their molecular packing and intermolecular interactions. Her work integrates quantum chemical computations, particularly Density Functional Theory (DFT), to investigate electronic properties, spectroscopic behavior, and reactivity patterns of novel molecules. She applies molecular docking and molecular dynamics simulations to study ligand–protein interactions, with special attention to antiviral targets like SARS-CoV-2 proteins, highlighting critical residues and interaction mechanisms. Additionally, Dr. Geetha explores Hirshfeld surface analysis to visualize and quantify intermolecular contacts and non-covalent interactions. Her research extends to the design and synthesis of novel heterocyclic molecules, combining experimental and computational approaches for structure–activity correlation. She has contributed to understanding drug-like properties, binding affinities, and stability profiles of therapeutic candidates. Her studies also involve electrostatic potential mapping, frontier molecular orbital analysis, and hydrogen-bonding evaluation, providing predictive insights for biological activity. The integration of crystallography, computational chemistry, and in-silico studies allows her to develop a comprehensive understanding of molecular behavior in both solid-state and biological environments. Her work consistently emphasizes innovation, molecular-level insight, and application to pharmacologically relevant systems, bridging experimental and theoretical chemistry. Dr. Geetha’s research contributes to rational drug design, molecular recognition studies, and advanced material analysis, reflecting a strong interdisciplinary approach in physical, computational, and medicinal chemistry.

Profile: Scopus 

Featured Publications

Karthik, V., Santhosh, C., Geetha, D. V., Chandini, K. M., Sindogi, K., Sridhar, M. A., & Sadashiva, M. P. (2026). Multifaceted exploration of benzyl 5-(p-tolyl)-1,3,4-thiadiazole-2-carboxylate: Spectroscopic, structural, and computational insights into its drug-like potential. Journal of Molecular Structure, 1350, 143963.

Geetha, D. V., Harisha, A. S., Karthik, V., Chanadana, S. N., Kavitha, H. D., Lakshminarayana, B. N., & Sridhar, M. A. (2026). X-ray structural analysis, quantum chemical computations, molecular docking, and molecular dynamics simulations of diethyl 5’-amino-3,3-dibromo-2,6-dicyano-1,2,3,4-tetrahydro-[1,1.3,1-terphenyl] 2,4-dicarboxylate. Journal of Molecular Structure, 1351, 144142.

Lakshminarayana, B. N., Sreenatha, N. R., Sharath, C. L., Geetha, D. V., Shivakumar, N., & Balakrishna, K. (2025). Synthesis and comparative investigations of DFT/B3LYP, B3PW91, CAM-B3LYP and HSEH1PBE methods applied to molecular structure, spectroscopic analysis, electronic properties of a novel hydrazone having triazole and pyrazole moiety. Results in Chemistry.

Al-Ostoot, F. H., Akhileshwari, P., Kameshwar, V. H., Geetha, D. V., Aljohani, M. S., Alharbi, H. Y., Khanum, S. A., & Sridhar, M. A. (2024). Structural and theoretical exploration of a multi-methoxy chalcone: Synthesis, quantum theory, electrostatics, molecular packing, DFT analysis, and in-silico anti-cancer evaluation. Heliyon, e33814.

Geetha, D. V., Sharath, C. L., Shivakumar, N., Lakshminarayana, B. N., Chandini, K. M., & Balakrishna, K. (n.d.). Novel series of hydrazones carrying pyrazole and triazole moiety: Synthesis, structural elucidation, quantum computational studies and antiviral activity against SARS-Cov-2.

Dr. Fatma Ouled Saad | Experimental Physics | Best Researcher Award

Dr. Fatma Ouled Saad | Experimental Physics | Best Researcher Award

Dr. Fatma Ouled Saad | ENIM | Tunisia

Ouled Saad Fatma is a researcher in energetic engineering whose work focuses on thermal processes, renewable energy systems, and advanced methods for improving energy efficiency. She has contributed to the development and optimization of solar desalination technologies, particularly through innovative mechanisms designed to enhance solar still productivity and overall thermal performance. Her studies also explore the application of phase change materials to improve heat storage and transfer, supporting more effective energy capture and utilization in sustainable systems. Beyond renewable technologies, she has conducted significant research in electrical resistance tomography, offering new approaches for analyzing material properties and characterizing porosity in complex media. Her academic contributions extend to teaching and supervising projects in areas such as thermodynamics, fluid mechanics, refrigeration systems, sensors, and materials science, where she plays an active role in guiding students in applied engineering practices. Through her combined efforts in research, teaching, and project supervision, she consistently promotes innovative thinking and practical solutions in energy engineering. Her work reflects a strong commitment to advancing environmentally responsible technologies and improving the performance of thermal and energy systems. She is recognized for her ability to integrate experimental methods with analytical modeling to address engineering challenges. Her diverse contributions support progress in sustainable energy, applied thermal sciences, and diagnostic techniques for engineering materials.

Profile: Scopus 

Featured Publications

Ouled Saad, F., Madiouli, J., Mihoubi, D., Shigidi, I., & Sghaier, J. (2026). Estimating talc and cellulose porosity under mechanical dewatering using electrical resistance tomography technique. Flow Measurement and Instrumentation, 107, 103124.

Ouled Saad, F., Madiouli, J., Chemkhi, S., Mankai, S., & Shigidi, I. (2024). Increasing the productivity and the thermal efficiency of conventional solar stills using a new rotating discs mechanism. International Journal of Environmental Science and Technology. (Advance online publication)

Ouled Saad, F., Mankai, S., Madiouli, J., Chemkhi, S., Shigidi, I., & Khan, M. I. (2024). Effect of phase change materials melting temperature on improving single slope solar still productivity. Journal of Energy Storage. (Advance online publication)

Ouled Saad, F., Aymen, S., Madiouli, J., Jalila, S., & Olivier, F. (2016). Quadrupole method: A new approach for solving the direct problem of electrical resistance tomography. Journal of King Saud University – Science.

 

Prof. Dr. Adel Mohamed | Materials Engineering | Research Excellence Award

Prof. Dr. Adel Mohamed | Materials Engineering | Research Excellence Award

Prof. Dr. Adel Mohamed | Suez University | Egypt

Prof. Adel Mohamed Amer Mohamed is a leading scholar in metallurgical and materials engineering, widely recognized for his influential research, academic leadership, and contributions to scientific advancement. His work spans advanced materials, electronic materials, metal matrix composites, theoretical modeling, electrocatalysis, and energy-storage systems, with a strong emphasis on modern materials innovation. He has produced an extensive research portfolio that includes high-impact journal publications, conference contributions, book chapters, and authored books reflecting both scientific depth and interdisciplinary relevance. Prof. Adel is consistently listed among the Stanford Top 2% Scientists, highlighting his global research visibility and strong citation indicators. His achievements extend beyond research into curriculum development, academic program enhancement, and quality assurance within higher education. He has played a central role in improving undergraduate and postgraduate academic structures while fostering a culture of scientific excellence. His leadership includes overseeing laboratory development, guiding student learning environments, and supporting scientific training initiatives. He has significantly contributed to strengthening industry–academia cooperation through collaborative projects, training programs, and strategic partnerships. Prof. Adel also actively participates in national scientific committees, reflecting his expertise in advanced materials and his role in shaping research directions. His editorial work and service as a reviewer for numerous journals demonstrate his commitment to maintaining high scientific standards. Dedicated to mentoring, he has supervised multiple postgraduate theses, helping shape the next generation of materials researchers. His research projects span diverse areas of application, including sustainable technologies, electrochemical systems, structural materials, and nanostructured composites. Through his continuous contributions to scientific research, academic development, and institutional growth, Prof. Adel Mohamed Amer Mohamed has established himself as a prominent figure in the field of materials engineering and a driving force behind the advancement of research and education.

Profiles: Scopus | Orcid

Featured Publications

Hsu, C.-Y., Ali, A. B. M., Jamal, Z. H., Mudhafar, M., Alsailawi, H. A., Abduvalieva, D., Mohamed, A. M. A., Adil, S. K., Alkahtani, H. M., & Mahariq, I. (2025). Transition metal-functionalized hexagonal bipyramidal boron clusters as high-performance electrocatalysts for hydrogen evolution reaction: A DFT study. International Journal of Hydrogen Energy.

Matli, P. R., Manohar, G., Abdelatty, R., Shakoor, R. A., Azeem, A., Lingala, S. S. R., Kotalo, R. G., & Mohamed, A. M. A. (2024). Characterization of microstructural and mechanical properties of hybrid Al/SiC/Al₂O₃ nanocomposites. Emergent Materials.

Moussa, M. E., Salem, M. M. M., Hamid, M. A., Gomaa, M. H., Abd-Elwahed, A., Ghayad, I. M., & Mohamed, A. A. (2024). Mechanical integrity and in vitro degradation behavior of Mg–Zn–Ca biodegradable alloy prepared by different casting technologies. International Journal of Metalcasting.

Mikky, Y. A., Bhran, A. A., El-Araby, R. Y., Mohamed, A. M. A., Gadallah, A. G., & Shoaib, A. M. (2024). Optimization of biodiesel–nanoparticle blends for enhanced diesel engine performance and emission reduction. Processes, 12(11), Article 2471.

Mohamed, A. M. A., Ibrahim, M. F., Zedan, Y., Samuel, E., Samuel, A. M., & Samuel, F. H. (2023). A study on the factors enhancing the high-temperature strength of B319.2-type alloys. International Journal of Metalcasting.

Prof. Byung Chang Suh | Biophysics | Research Excellence Award

Prof. Byung Chang Suh | Biophysics | Research Excellence Award

Prof. Byung Chang Suh | Daegu Gyeongbuk Institute of Science and Technology | South Korea

Byung-Chang Suh, Ph.D., is a professor in brain sciences whose research focuses on the molecular and cellular mechanisms that regulate neuronal excitability and signal transduction. He is widely recognized for advancing the understanding of ion channels, GPCR-mediated pathways, phosphoinositide signaling, and membrane repair processes in neuronal systems. His work highlights how key regulators such as PI(4,5)P₂, TMEM16 scramblases, and M3 receptors influence neuronal function and intracellular communication. He has contributed major insights into ion channel modulation, receptor cross-talk, and the molecular basis of sensory and behavioral regulation in model organisms. His publications span high-impact journals and address topics such as ligand-independent receptor activation, macropinocytosis, endosomal sorting, and neuropeptide-driven behavioral control. He is actively involved in editorial roles across multiple international journals in neuroscience, physiology, and endocrinology. His expertise is often sought through peer review for leading journals in the fields of cell biology, neurophysiology, and molecular signaling. His research productivity has earned institutional recognition for academic excellence. Beyond research, he is deeply committed to teaching, mentoring, and cultivating young scientific talent through undergraduate and pre-college research programs. His multidisciplinary approach integrates biophysics, molecular neuroscience, and cellular physiology to illuminate fundamental principles of brain function. His contributions continue to influence studies on neuronal signaling, disease-related pathways, and mechanisms of cellular homeostasis.

Profile: Orcid

Featured Publications

Jeong, D. J., Woo, J. N., Yun, T., Baek, M., & Suh, B. C. (2025). Kv7 channels as an important contributor to alcohol-induced modulation of neuronal excitability in neonatal rat superior cervical ganglion. Cells, 14(21), 1723.

Kim, B. I., Yeon, J. H., & Suh, B. C. (2025). Palmitoylation code and endosomal sorting regulate ABHD17A plasma membrane targeting and activity. International Journal of Molecular Sciences, 26(20), 10190.

Kim, J. E., Ko, W., Jin, S., Woo, J. N., Jung, Y., Bae, I., Choe, H. K., Seo, D., Hille, B., & Suh, B. C. (2025). Activation of TMEM16E scramblase induces ligand-independent growth factor receptor signaling and macropinocytosis for membrane repair. Communications Biology, 8, Article 35.

Kim, D. Y., Moon, K. M., Heo, W., Du, E. J., Park, C. G., Cho, J., Hahm, J. H., Suh, B. C., Kang, K. J., & Kim, K. (2024). A FMRFamide-like neuropeptide FLP-12 signaling regulates foraging-like behaviors in C. elegans. BMB Reports, 47, 100124.

Ko, W., Lee, E., Kim, J. E., Lim, H. H., & Suh, B. C. (2024). The plasma membrane inner leaflet PI(4,5)P₂ is essential for the activation of proton-activated chloride channels. Nature Communications, 15, 7008.

 

Dr. Byunghong Lee | Quantum Materials | Research Excellence Award

Dr. Byunghong Lee | Quantum Materials | Research Excellence Award

Dr. Byunghong Lee | Hyundai Motor Group | South Korea

Dr. Byunghong Lee is a materials scientist with expertise in advanced electrochemical systems and clean energy technologies. His research focuses on transparent photovoltaics, perovskite solar cells, and radiative-cooling materials for energy-efficient applications. He develops electrochromic smart windows and multifunctional nanomaterials for sustainable buildings and smart-city solutions. His work includes designing high-performance metal oxides for energy harvesting and storage systems. He explores hybrid inorganic–organic materials, photonic crystal structures, and advanced carbon materials for multifunctional devices. Dr. Lee has pioneered scalable fabrication processes for low-cost and air-stable perovskite solar cells. He integrates nanostructured materials into electrodes for lithium-metal batteries and supercapacitors. His research emphasizes energy-efficient, multifunctional device architectures. He has contributed to the development of novel photocatalytic and clean-air filtration materials. Dr. Lee’s studies in photonic crystals enable tunable optical and thermal properties for smart surfaces. He has authored numerous high-impact journal papers, patents, and book chapters in energy and materials science. His work has influenced industrial applications in mobility PV and building-integrated solar systems. He actively participates in national and international research initiatives and advisory committees. Dr. Lee’s contributions bridge fundamental materials science with practical energy solutions. His innovations have earned recognition in clean energy, nanomaterials, and photonic technologies.

Profile: Scopus

Featured Publications

Keum, J., Choi, J., Kim, S., Kang, G., Lee, B., Lee, M. J., & Kim, W. (2025). Innovative dual-band energy-efficient smart windows using VO₂(M)-based Fabry–Pérot structures for solar and radiative cooling modulation. Materials Today Physics.

Jung, Y., Pyun, K. R., Yu, S., Ahn, J., Kim, J., Park, J. J., Lee, M. J., Lee, B., Won, D., Bang, J., & Ko, S. H. (2025). Laser-induced nanowire percolation interlocking for ultrarobust soft electronics. Nano Micro Letters.

 

Assoc. Prof. Dr. Valeriy Bacherikov | Spectroscopy | Excellence in Research

Assoc. Prof. Dr. Valeriy Bacherikov | Spectroscopy | Excellence in Research

Assoc. Prof. Dr. Valeriy Bacherikov | A. V. Bogatsky Physico-Chemical Institute NAS of Ukraine

Valeriy Anatoliyovych Bacherikov is a distinguished scientist in organic and medicinal chemistry, specializing in stereochemistry, supramolecular chemistry, and pharmaceutical applications. His research focuses on the design, synthesis, and study of biologically active compounds, including antiviral agents targeting coronavirus proteases. He has contributed to the development and clinical evaluation of antiviral drugs such as Amizon, demonstrating their efficacy in viral infections and reducing complications. Bacherikov also explores the use of medicinal herbs in pharmaceutical and cosmetic formulations, highlighting modern trends in phytopharmaceutical research. He has investigated alternative strategies to combat antibiotic resistance, including chromium-based solutions and innovative therapeutic approaches. His publications in national and international journals and conference proceedings reflect broad scientific influence and a commitment to advancing chemical and biomedical knowledge. He actively organizes scientific conferences, particularly in pharmacology, cosmetology, and aromology, and serves as a peer reviewer for high-impact journals, supporting rigorous scientific standards. Bacherikov mentors students and junior researchers in chemistry, biochemistry, and pharmaceutical sciences, cultivating the next generation of scientists. His work bridges fundamental chemical research and practical biomedical applications, demonstrating the translational value of his studies. Recognized for integrating organic chemistry with pharmacological insights, he continues to advance antiviral drug design, supramolecular chemistry, and phytopharmaceutical development. Through teaching, research supervision, and active participation in scientific communities, he influences both academic and applied research landscapes. His ongoing studies promise further advancements in antiviral agents, novel therapeutics, and interdisciplinary approaches in pharmaceutical sciences.

Profile: Orcid

Featured Publications

Zlatov, Y., Bacherikov, V., Teslyuk, O., Zheltvay, I., Ognichenko, L., & Derkach, L. (2026). Study of luminescence properties of lanthanide complexes of dehydroacetic acid derivatives. Journal of Luminescence. Advance online publication.

Bacherikov, V. (2022). Total synthesis, mechanism of action and antitumor efficacy of camptothecin and some of its analogues. Anti-Cancer Agents in Medicinal Chemistry, 22(5), 501–517.

Bacherikov, V. A., Chittiboyina, A. G., & Avery, M. A. (2017). Design, synthesis, and biological evaluation of peptidomimetic N-substituted Cbz-4-Hyp-Hpa-amides as novel inhibitors of Plasmodium falciparum. Chemistry & Biodiversity, 14(7), e1700037.

Bacherikov, V. V., & Bacherikov, V. A. (2015). Dr. Samokhotskiy's method of healing inflammation by the analysis and regulation of blood electrolyte balance. Journal of Experimental Therapeutics & Oncology.

Bacherikov, V. (2015). Strategy and preparation of some building blocks for synthesis of branched oligosaccharides. Odessa National University Herald. Series: Chemistry, 1(53), 445–453.